Treatment of osteomyelits and fractures with critical bone loss in experiments on rats using biocomposites containing nanocapsular polymer systems for intracellular delivery of BMP-coding plasmids, tenoxicam and vancomycin



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Osteomyelitis remains a significant issue associated with a high frequency of recurrence and a substantial risk of serious complications. The situation is exacerbated by the increasing antibiotic resistance, which reduces the effectiveness of traditional antibacterial therapies. In this regard, the search for new methods of treating osteomyelitis becomes particularly relevant, especially in cases accompanied by extensive bone loss.

AIM: This study tested an approach for osteomyelitis treating using biocomposite bone implants based on a matrix of washed bovine spongiosa bone, with a complex medicinal function providing local antibacterial, anti-inflammatory and bone-regenerative effects. The effectiveness of the approach was assessed using a model of experimental rat osteomyelitis.

MATERIALS AND METHODS: The research involved developing polysaccharide gels with mechano-rheological properties similar to those of soft tissues (G‘=176–271 kPa, G’=3.7–4.2 kPa), containing amikacin and vancomycin (250 mg/g of dry polymer), tenoxicam (0.28 mg/ml), and a BMP-coding plasmid (12.83 ng/ml), providing the implants with local antibacterial, directed anti-inflammatory effects, and bone tissue growth stimulation. Two types of nanocorpuscular carriers with different diameters were incorporated into the gel: hyaluronic gel nanoparticles with a bimodal size distribution (d=100 and 3000 nm) for the delivery of tenoxicam into phagocytic immunocompetent cells, and nanocapsules coated with a transfection agent (d=50–100 nm) to facilitate transmembrane transport of the plasmid into non-phagocytic cells, where ribosomes synthesize BMP-2 to initiate cell differentiation along the bone pathway. Antibiotics are released from the carrier only at the moment of bacterial attack of the implant under the action of bacterial enzymes and provide their local concentration 200 times exceeding the bactericidal one. Cytotoxicity in recalculation on dry gel is 1800 µg/ml. The minimum inhibitory concentration against Staphylococcus aureus 209P is 25 µg/ml, bactericidal concentration is 100 µg/ml.

RESULTS: It was found that biocomposites impregnated with drug gel effectively inhibit local bacterial infections, reduce the overall level of local aseptic inflammation, and promote bone regeneration in osteomyelitis.

CONCLUSIONS: The methodological approach to treating purulent-septic inflammation complicated by bone tissue loss, using implants with complex drug functions, shows promise.

Full Text

Restricted Access

About the authors

Valery Alexandrovich Dyatlov

D.I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia; M.V. Lomonosov Institute of Fine Chemical Technologies – MIREA-RTU, Moscow, Russia

Email: dyatlov.va@mail.ru
SPIN-code: 9295-7300

PhD, DSc, Prof;
Russian Federation

Tatyana Sergeevna Seregina

Mendeleev University of Chemical Technology of Russia

Email: tatiana.seregina.2016@yandex.ru
SPIN-code: 4657-6816
Russian Federation

Anna Andreevna Belyaeva

Institute of Cytology Russian Academy of Sciences, Saint Petersburg, Russia

Email: anna.myruleva.a@gmail.com
Russian Federation

Anna Borisovna Malashiceva

Institute of Cytology Russian Academy of Sciences, Saint Petersburg, Russia

Email: аmalashicheva@gmail.com
SPIN-code: 6053-2075
Russian Federation

Marchel Stepanovich Vetrile

ЦИТО

Email: vetrilams@cito-priorov.ru
SPIN-code: 9690-5117

канд. мед. наук, старший науч. сотр. отделения. Тел.: (495) 450-38-41; ЦИТО

Russian Federation

Anna Alekseevna Vaniushenkova

Mendeleev University of Chemical Technology of Russia, Moscow, Russia

Email: avaniushenkova@yandex.ru
SPIN-code: 4370-2518
Russian Federation

Eva Samvelovn Kostandyan

Mendeleev University of Chemical Technology of Russia, Moscow, Russia

Email: eva.kostandyan@yandex.ru
SPIN-code: 6081-9545
Russian Federation

Mikhail Leonidovich Sulpovar

Mendeleev University of Chemical Technology of Russia, Moscow, Russia

Email: sulpovar.misha@mail.ru
SPIN-code: 9036-8433
Russian Federation

Yuri Vasilievich Grigoriev

National Research Center “Kurchatov Institute”, Moscow, Russia

Email: ygrigoriev@mail.ru
SPIN-code: 2588-5313

PhD
Russian Federation

Anna Pavlovna Kordyukova

Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047, Moscow, Russian Federation

Author for correspondence.
Email: annakordukova2002@gmail.com
ORCID iD: 0009-0000-1727-249X
Russian Federation

Alexander Valerievich Dyatlov

Mendeleev University of Chemical Technology of Russia, Moscow, Russia

Email: dyatlofff@gmail.com

PhD in Bio. sci.
Russian Federation

References

  1. Kavanagh N, Ryan EJ, Widaa A, et al. Staphylococcal osteomyelitis: Disease progression, treatment challenges, and future directions. Clin Microbiol Rev. 2018;31(2):e00084–17. doi: 10.1128/CMR.00084-17
  2. Jorge LS, Chueire AG, Rossit AR. Osteomyelitis: A current challenge. Braz J Infect Dis. 2010;14(3):310–5. doi: 10.1590/s1413-86702010000300020
  3. Schmitt SK. Osteomyelitis. Infect Dis Clin North Am. 2017;31(2):325–338. doi: 10.1016/j.idc.2017.01.010
  4. Sohn H-S, Oh J-K. Review of Bone Graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res. 2019;23:9. doi: 10.1186/s40824-019-0157-y
  5. Bhuniya S, Demina TS, Akopova TA. Advances in applications of polysaccharides and polysaccharide-based materials. International Journal of Molecular Sciences. 2024;25(12):6482. doi: 10.3390/ijms25126482 EDN: DUTDGS
  6. Seregina T, Shelomentsev I, Krivoborodov E, et al. Physicochemical and biological properties of vancomycin-containing antibacterial polysaccharide gels for biocomposite bone implant impregnation. Biomacromolecules. 2024;25(7):4156–4167. doi: 10.1021/acs.biomac.4c00268 EDN: FDVABJ
  7. Luss A, Kushnerev K, Vlaskina E. Gel based on hydroxyethyl starch with immobilized amikacin for coating of bone matrices in experimental osteomyelitis treatment. Biomacromolecules 2023;24(12):5666–5677. doi: 10.1021/acs.biomac.3c00653.s001 EDN: YXJHBE
  8. Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Materials Science and Engineering: C. 2020;110:110698. doi: 10.1016/j.msec.2020.110698 EDN: XRCKMB
  9. Nhlapo N, Dzogbewu TC, de Smidt O. Nanofiber polymers for Coating Titanium-based biomedical implants. Fibers. 2022;10(4):36. doi: 10.3390/fib10040036 EDN: TINGRG
  10. Kotela I, Podporska J, Soltysiak E, et al. Polymer nanocomposites for bone tissue substitutes. Ceramics International. 2009;35(6):2475–2480. doi: 10.1016/j.ceramint.2009.02.016
  11. Smolentsev DV, Lukina YuS, Bionyshev-Abramov LL, et al. Models for purulent septic inflammation of the tibia in rats to assess the effect of bioresorbable materials with antimicrobial drugs. Genij Ortopedii. 2023;29(2):190–203. doi: 10.18019/1028-4427-2023-29-2-190-203 EDN: PIOJYR
  12. Smolentsev DV, Lukina YuS, Bionyshev-Abramov LL, et al. Comparative analysis of the effectiveness of bone matrix purification protocols. N.N. Priorov Journal of Traumatology and Orthopedics 2024;31(3):367–380. doi: 10.17816/vto634164 EDN: INAZKR
  13. Norden C, Keleti E. Experimental osteomyelitis caused by pseudomonas aeruginosa. Journal of Infectious Diseases. 1980;141(1):71–75. doi: 10.1093/infdis/141.1.71
  14. Smeltzer MS, Thomas JR, Hickmon SG, et al. Characterization of a rabbit model of staphylococcal osteomyelitis. J Orthop Res. 1997;15(3):414–21. doi: 10.1002/jor.1100150314
  15. Huang S, Huang G. Preparation and drug delivery of Dextran-drug complex. Drug Delivery. 2019;26(1):252–261. doi: 10.1080/10717544.2019.1580322
  16. Hovgaard L, Brøndsted H. Dextran hydrogels for colon-specific drug delivery. Journal of Controlled Release. 1995;36(1–2):159–166. doi: 10.1016/0168-3659(95)00049-e
  17. Huang S, Huang G. Design and application of Dextran Carrier. Journal of Drug Delivery Science and Technology. 2020;55:101392. doi: 10.1016/j.jddst.2019.101392
  18. Zheng T, Yu X, Pilla S. Mechanical and moisture sensitivity of fully bio-based dialdehyde carboxymethyl cellulose cross-linked soy protein isolate films. Carbohydrate Polymers. 2017;157:1333–1340. doi: 10.1016/j.carbpol.2016.11.011
  19. Zheng T, Yu X, Pilla S. Mechanical and moisture sensitivity of fully bio-based dialdehyde carboxymethyl cellulose cross-linked soy protein isolate films. Carbohydrate Polymers. 2017;157:1333–1340. doi: 10.1016/j.carbpol.2016.11.011
  20. Rahman MdS, Hasan MS, Nitai AS, et al. Recent developments of carboxymethyl cellulose. Polymers (Basel). 2021;13(8):1345. doi: 10.3390/polym13081345
  21. Gumnikova VI. Synthesis of Dialdehyde Dextran and Dialdehyde Carboxymethylcellulose and Their Chemical Transformations [dissertation]. Moscow; 2014. 22 p. (In Russ.) EDN: ZPOAYV
  22. Dyatlov V, Seregina T, Luss A, et al. Immobilization of amikacin on Dextran: Biocomposite materials that release an antibiotic in the presence of bacterial dextranase. Polymer International. 2021;70(6):837–844. doi: 10.1002/pi.6171 EDN: SYKUBG
  23. Falsafi SR, Topuz F, Rostamabadi H. Dialdehyde carbohydrates — advanced functional materials for biomedical applications. Carbohydrate Polymers. 2023;321:121276. doi: 10.1016/j.carbpol.2023.121276
  24. Zhai P, Peng X, Li B, Liu Y, Sun H, Li X. The application of hyaluronic acid in bone regeneration. Int J Biol Macromol. 2020;151:1224–1239. doi: 10.1016/j.ijbiomac.2019.10.169
  25. Ding W, Wu Y. Sustainable dialdehyde polysaccharides as versatile building blocks for fabricating functional materials: An overview. Carbohydrate Polymers. 2020;248:116801. doi: 10.1016/j.carbpol.2020.116801
  26. Antibiotic Resistance from Low Concentrations. Elicit [Electronic resource]. Available from: https://elicit.com/notebook/cc1a2ffd-3cd6-4a74-9cab-2f4d1410a060#183105549cc20d73cf5f9dec03a3ffd4 Accessed: March 28, 2025.
  27. Mechanical Mismatches and Tumor Formation. Elicit [Electronic resource]. Available from: https://elicit.com/notebook/8524ac14-bb93-44c2-913c-c62d88a2b405#183105a4678e0ad205037296024d96f1 Accessed: March 28, 2025.
  28. Wang D, Chen B. The effects of subcutaneously injected novel biphasic cross-linked hyaluronic acid filler: An in vivo study. Aesthetic Plastic Surgery. 2021;46(S1):174–175. doi: 10.1007/s00266-021-02200-y
  29. Peng Z, Tang P, Zhou M, et al. Advances in biomaterials for adipose tissue reconstruction in plastic surgery. Nanotechnology Reviews. 2020;9(1):385–395. doi: 10.1515/ntrev-2020-0028 EDN: RQIQVT
  30. Blinkova AA, Kordykova AP, Vihlyaeva VA, et al. Hydrogel nanoparticles based on cross-linked hyaluronic acid for intracellular drug delivery. Uspekhi v khimii i khimicheskoi tekhnologii. 2023;(6):20–24. EDN: JXEKUU
  31. Kostandyan ES, Vanyushenkova AA, Dyatlov VA. A novel bone substitute composite based on dialdehydcarboxymethylcellulose with antimicrobial properties. Uspekhi v khimii i khimicheskoi tekhnologii. 2023;(6):87–90. EDN: CYDRUU
  32. Shelomentsev IV, Seregina TS, Vanyushenkova AA, et al. Dextran hydrogels containing covalently bound vancomycin for use in reconstructive surgery. Uspekhi v khimii i khimicheskoi tekhnologii. 2023;37(6):128–131. EDN: JUABTX
  33. Kupikowska-Stobba B, Kasprzak M. Fabrication of nanoparticles for bone regeneration: New insight into applications of nanoemulsion technology. Journal of Materials Chemistry B. 2021;9(26):5221–5244. doi: 10.1039/d1tb00559f
  34. Carreira ACO, Zambuzzi WF, Rossi MC, et al. Bone Morphogenetic Proteins: Promising Molecules for Bone Healing, Bioengineering, and Regenerative Medicine. Vitam Horm. 2015;99:293–322. doi: 10.1016/bs.vh.2015.06.002
  35. Liu H, Song P, Zhang H, et al. Synthetic biology‐based bacterial extracellular vesicles displaying BMP‐2 and CXCR4 to ameliorate osteoporosis. Journal of Extracellular Vesicles. 2024;13(4):e12429. doi: 10.1002/jev2.12429
  36. Crouzier T, Fourel L, Boudou T, et al. Presentation of BMP‐2 from a soft biopolymeric film unveils its activity on cell adhesion and migration. Adv Mater. 2011;23(12):H111–8. doi: 10.1002/adma.201004637
  37. Reed SE, Staley EM, Mayginnes JP, et al. Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J Virol Methods. 2006;138(1–2):85–98. doi: 10.1016/j.jviromet.2006.07.024
  38. Kulkarni JA, Myhre JL, Chen S, et al. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. Nanomedicine. 2017;13(4):1377–1387. doi: 10.1016/j.nano.2016.12.014
  39. Luss AL, Kulikov PP, Romme SB, et al. Nanosized carriers based on amphiphilic poly-N-vinyl-2-pyrrolidone for Intranuclear Drug Delivery. Nanomedicine (Lond). 2018;13(7):703–715. doi: 10.2217/nnm-2017-0311
  40. Luss AL, Andersen CL, Benito IG, et al. Drug delivery platform based on amphiphilic poly-N-vinyl-2-pyrrolidone: The role of size distribution in cellular uptake. Biophysical Journal. 2018;114(3S1):278–279. doi: 10.1016/j.bpj.2017.11.1605 EDN: IHLXXC
  41. Dyatlov VA, Seregina TS, Derevnin IA, et al. First comb-like copolymer of poly(ethyl 2-cyanoacrylate) grafted as a side-chain to Dextran. Mendeleev Communications. 2024;34(6):881–883. doi: 10.1016/j.mencom.2024.10.035 EDN: IXDSUL

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-76249 от 19.07.2019.