Neuropeptides in the regulation of brain activity in normal and neurodegeneration


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

An analysis of the literature containing information on the participation of neuropeptides in the development of brain diseases was carried out. Changes in the production, processing and secretion of neuropeptides, the activity of signaling mechanisms with their participation are responsible for the formation of different variants of neurological deficits (cognitive, behavioral, etc.). As a rule, neuropeptides or otherwise biologically active molecules in the body can function as neurotransmitters, neuromodulators, or neurohormones that perform cognitive and behavioral functions. These biologically active molecules are localized in cells in secretory vesicles, which are delivered from the body of nerve cells to nerve endings and act through Gp-conjugated receptors. The action of neuropeptides has been significantly studied relative to pathological conditions of the brain. So, the mechanism of development of Alzheimer's disease is associated with a diverse spectrum of neuropeptides such as ghrelin, neurotensin, pituitary activating adenylates cyclase polypeptide, neuropeptide Y, neuropeptide P, orexin. This disease is characterized by the accumulation of amyloid β (represented by two forms - Api-42, Api-40) in the brain tissue, which is due to an imbalance in the activity of secretases. The target of action is the precursor protein (APP). The form of the Aβ1-42 peptide has a destructive effect on the cell, this is due to a multidirectional effect: damage to mitochondria, an increase in the sensitivity of neurons to the effects of glutamate, impaired calcium metabolism, and a slowdown in metabolic transformations of glucose. Aβ peptide is characterized by the performance of a key function in synaptic transmission of a nerve impulse and enhanced synaptic transmission between two neurons for a long time. The pathological picture of Alzheimer's disease is characterized by significant expression of apolipoprotein E (APOE) in the brain tissue, which forms local cell clusters of amyloid β with Aβ, a decrease in the number of neurons expressing proopiomelanocortin (POMC), neuropeptide Y (NPY) and agouti-like peptide (AgRP) genes that change brain activity. As a result, expression of genes responsible for the synthesis of proteins of the immune system, early development of neuroinflammation and activation of apoptosis is also noted. Thus, neuropeptides are considered not only as biomarkers of pathological conditions, but also as targets for pharmacological preparations.

Full Text

Restricted Access

About the authors

E. A Teplyashina

Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation

Email: elenateplyashina@mail.ru
Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry

R. Ya Olovyannikova

Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation

Email: Olovyannikova2010@yandex.ru
Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry

E. V Kharitonova

Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation

Email: ekaterinav1201@gmail.com
Ph.D. (Pharm.), Senior Lecturer, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry

O. L Lopatina

Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation

Email: ol.lopatina@gmail.com
Dr.Sc. (Biol.), Professor, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry

V. A Kutyakov

Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation

Email: victor-koutjakov@yandex.ru
Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry

S. I Pashchenko

Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation

Email: psi51@mail.ru
Assistant, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry

E. A Pozhilenkova

Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation

Email: elena.a.pozhilenkova@gmail.com
Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry

A. B Salmina

Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation

Email: allasalmina@mail.ru
Dr.Sc. (Med.), Professor, Head of the Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry

References

  1. Hook V., Lietz C., Podvin S., Cajka T., Fiehn O. Diversity of Neuropeptide Cell-Cell Signaling Molecules Generated by Proteolytic Processing Revealed by Neuropeptidomics Mass Spectrometry. J Am Soc Mass Spectrom. 2018; 29(5): 807-816.
  2. Bakos J., Zatkova M., Bacova Z., Ostatnikova D. The Role of Hypothalamic Neuropeptides in Neurogenesis and Neurito-genesis. Neural Plast. 2016; 13.
  3. Van Dam D., Van Dijck A., Janssen L., De Deyn P.P. Neuropeptides in Alzheimer's disease: from pathophysiological mechanisms to therapeutic opportunities. Curr Alzheimer Res. 2013; 10(5): 449-68.
  4. Chen X.Y, Du Y.F, Chen L. Neuropeptides Exert Neuroprotective Effects in Alzheimer's Disease. Front. Mol. Neurosci. 2019; 11: 493.
  5. Горина Я.В., Комлева Ю.К., Лопатина О.Л., Черных А.И., Салмина А.Б. Влияние инсулинорезистентности на нарушение метаболизма глюкозы в миндалине головного мозга при экспериментальной болезни Альцгеймера. Бюллетень сибирской медицины. 2017; 16(4): 106-115
  6. Комлева Ю.К., Горина Я.В., Черных А.И., Лопатина О.Л., Шабалова А.А., Труфанова Л.В., Оловянникова Р.Я., Ендржеевская-Шурыгина В.Ю., Салмина А.Б. Особенности пролиферации и миграции клеток головного мозга при когнитивном тренинге животных с экспериментальной болезнью Альцгеймера. Бюллетень сибирской медицины. 2016; 6: 1-5
  7. Do K., Laing B.T., Landry T., Bunner W., Mersaud N., Matsubara T., Li P., Yuan Y., Lu Q., Huang H. The effects of exercise on hypothalamic neurodegeneration of Alzheimer’s disease mouse model. J. Am. Soc. Mass Spectrom; 2018; 13(1).
  8. Popelovd A., Kdkonovd A., Hrubd L., Kunes J., Maletlnskd L., Zeleznd B. Potential neuroprotective and anti-apoptotic properties of a long-lasting stable analog of ghrelin: an in vitro study using SH-SY5Y cells. Physiol. Res. 2018; 67: 339-346.
  9. Hu K., Harper D.G., Shea S.A., Stopa E.G., Scheer F.A. Non-invasive fractal biomarker of clock neurotransmitter disturbance in humans with dementia. Sci. Rep. 2013; 3: 2229.
  10. Xiao Z., Cilz N.I., Kurada L., Hu B., Yang C., Wada E., Combs C.K., Porter J.E., Lesage F., Lei S. Activation of neurotensin receptor 1 facilitates neuronal excitability and spatial learning and memory in the entorhinal cortex: beneficial actions in an Alzheimer's disease model. J. Neurosci. 2014; 34: 7027-7042.
  11. An H., Cho M.H., Kim D.H., Chung S., Yoon S.Y. Orexin impairs the phagocytosis and degradation of amyloid-β fibrils by microglial cells. J. Alzheimers Dis. 2017; 253-261.
  12. Lee D.Y., Hong S.H., Kim B., Lee D.S., Yu K., Lee K.S. Neuropeptide Y mitigates ER stress-induced neuronal cell death by activating the PI3K-XBP1 pathway. Eur. J. Cell Biol. 2018; 97: 339-348.
  13. Johansson P., Almqvist E.G., Wallin A., Johansson J.O., Andreasson U., Blennow K., Zetterberg H., Svensson J. Cerebrospinal fluid substance P concentrations are elevated in patients with Alzheimer's disease. Neurosci. Lett. 2015; 609: 58-62.
  14. Gabelle A., Jaussent I., Hirtz C., Vialaret J., Navucet S., Grasselli C., Robert P., Lehmann S., Dauvilliers Y. Cerebrospinal fluid levels of orexin-A and histamine, and sleep profile within the Alzheimer process. Neurobiol. Aging. 2017; 53: 59-66.
  15. Gallone S., Boschi S., Rubino E., De Martino P., Scarpini E., Galimberti, D., Fenoglio C., Acutis P.L., Maniaci M.G, Pinessi L., Rainero I. Is HCRTR2 a genetic risk factor for Alzheimer's disease? Dement. Geriatr. Cogn. Disord. 2014; 38: 245-253.
  16. Balmus I.M., Ciobica A., Stoica B., Lefter R., Cojocari S., Reznikov A.G. Effects of Oxytocin Administration on Oxidative Markers in the Temporal Lobe of Aged Rats. Neurophysiology. 2019; 51: 18-24.
  17. Elabd C., Cousin W., Upadhyayula P., Chen R.Y., Chooljian M.S., Li J., Kung S., Jiang K.P., Conboy I.M. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat. Commun. 2014; 10 (5): 4082.
  18. Jesso S., Ross S., Pell M.D., Pastermak S.H., Mitchell D.G., Kertesz A., Finger E.C. The effects of oxytocin on social cognition and behaviour in frontotemporal dementia. Brain. 2011; 134(9): 2493-501.
  19. Finger E.C., MacKinley J., Blair M., Oliver L.D., Jesso S., Tartaglia M.C., Borrie M., Wells J., Dziobek I., Pasternak S., Mitchell D.G.V., Rankin K., Kertesz A., Boxer A. Oxytocin for frontotemporal dementia. Neurology. 2015; 84(2): 174-181.
  20. Tampi R.R., Maksimowski M., Ahmed D., Tampi M.J. Oxytocin for frontotemporal dementia: a systematic review. Ther. Adv. Psychopharmacol. 2017; 7(1): 48-53.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies