Lung fibrosis in COVID-19 survivors: histone deacetylase inhibitors as a promising therapeutic strategy


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Over the past twenty years, the world has witnessed several viral epidemics such as the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), influenza A subtype H1N1 virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and more recently the novel SARS-CoV coronavirus 2, which caused the disease COVID-19. The latest epidemic proved to be the most destructive and claimed more than 2 million lives. Today's efforts to combat COVID-19 are focused on controlling the spread of the coronavirus and identifying effective treatment options. Meanwhile, an analysis of data regarding the long-term clinical consequences of previous coronavirus infections (SARS-CoV and MERS-CoV) shows that with the removal of the virus from the body, the pathological process in many cases does not end and can develop into long-term lung damage, in particular, fibrous interstitial disease or pulmonary fibrosis. Thus, pulmonary fibrosis can become an ongoing problem in patients recovering from COVID-19. Therefore, it is necessary now to determine the strategy of preventive measures both to counteract the development of pulmonary fibrosis in patients with COVID-19 during inpatient treatment, and to prevent its occurrence and progression in the long term. Although anti-fibrotic drugs such as pirfeni-done and nintedanib have been shown to be effective in reducing the rate of deterioration in lung function, their results have not significantly improved patient recovery. In addition, the use of these drugs has been associated with serious side effects. In this regard, the purpose of this article is to consider the use of histone deacetylase inhibitors (HDACs) as an alternative epigenetic therapy strategy to prevent the development or progression of pulmonary fibrosis in recovered SARS-CoV-2 patients.

Full Text

Restricted Access

About the authors

K. A Aitbaev

Research Institute of Molecular Biology and Medicine

Email: kaitbaev@yahoo.com
Dr.Sc. (Med.), Professor, Head of the Department of Head. Laboratory of Pathological Physiology, Board Member of Chronic Kidney Disease Specialists Society of Kyrgyzstan

I. T Murkamilov

Kyrgyz State Medical Academy named after I.K. Akhunbaev; Kyrgyz-Russian Slavic University

Email: murkamilov.i@mail.ru
Ph.D. (Med.), Acting Associate Professor of the Department of Faculty Therapy; Senior Lecturer, Nephrologist, Chairman of the Board of Chronic Kidney Disease Specialists Society of Kyrgyzstan

H. A Murkamilova

SEI HPE Kyrgyz-Russian Slavic University

Email: murkamilovazh.t@mail.ru
Post-graduate Student, the Department of Therapy № 2

V. V Fomin

I.M. Sechenov First Moscow State Medical University (Sechenov University) of the Ministry of Healthcare of Russia

Email: fomin@mma.ru
Dr.Sc. (Med.), Professor, Corresponding Member of RAS, Head of the Department of Faculty Therapy № 1, Sklifosovsky Institute; Vice-rector in Clinical Work and Continuous Professional Education

I. O Kudaibergenova

Kyrgyz State Medical Academy named after I.K. Akhunbaev

Email: k_i_o2403@mail.ru
Dr.Sc. (Med.), Professor, Rector

F. A Yusupov

Osh State University

Dr.Sc. (Med.), Professor, Head of the Department Neurology, Psychiatry and Neurosurgery of Medicinal Faculty, Board Member of Chronic Kidney Disease Specialists Society of Kyrgyzstan; Chief Neurologist of Southern Region of Kyrgyzstan

References

  1. Wang H., Li X., Li T., et al. The genetic sequence, origin, and diagnosis of SARS- CoV-2. Eur. J. Clin. Microbiol. Infect. Dis. Off Publ. Eur. Soc. Clin. Microbiol. 2020; https://doi.org/10.1007/s10096-020-03899-4
  2. CDC, Coronavirus disease 2019 (COVID-19), in: Cent. Dis. Control Prev, 2020. https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/evidence-table.html. (Accessed 25 July 2020).
  3. Gu J., Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am. J. Pathol 2007; 170:11361147. https://doi.org/10.2353/ajpath.2007.061088
  4. Zhang P., Li J., Liu H., et al. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: a 15-year follow-up from a prospective cohort study. Bone Res. 2020; 8: 8. https://doi.org/10.1038/s41413-020-0084-5
  5. Tse G.M., To K.F., Chan P.K., et al. Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS). J. Clin. Pathol. 2004; 57: 260-265. https://doi.org/10.1136/jcp.2003.013276
  6. Antonio G.E., Wong K.T., Hui D.S., et al. Thin-section CT in patients with severe acute respiratory syndrome following hospital discharge: preliminary experience. Radiology. 2003; 228: 810-815. https://doi.org/10.1148/radiol.2283030726
  7. Wong K.T., Antonio G.E., Hui D.S., et al. Severe acute respiratory syndrome: thin- section computed tomography features, temporal changes, and clinicoradiologic correlation during the convalescent period. J. Comput. Assist. Tomogr. 2004; 28: 790-795. https://doi.org/10.1097/00004728-200411000-00010
  8. Wu X., Dong D., Ma D. Thin-section computed tomography manifestations during convalescence and long-term follow-up of patients with severe acute respiratory syndrome (SARS). Med. Sci. Monit. Int. Med. J. Exp.Clin. Res. 2016; 22: 27932799. https://doi.org/10.12659/msm.896985
  9. Muller N.L., Ooi G.C., Khong P.L., et al. High-resolution CT findings of severe acute respiratory syndrome at presentation and after admission. AJR Am. J. Roentgenol. 2004; 182: 39-44. https://doi.org/10.2214/ajr.182.1.1820039
  10. Chu W.C., Li A.M., Ng A.W., et al. Thin-section CT 12 months after the diagnosis of severe acute respiratory syndrome in pediatric patients. AJR Am. J. Roentgenol. 2006; 186: 1707-1714. https://doi.org/10.2214/AJR.05.0382
  11. Das K.M., Lee E.Y., Singh R., et al. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J. Radiol. Imaging. 2017; 27: 342-349. https://doi.org/10.4103/ijri.IJRI_469_16
  12. Mossel E.C., Wang J., Jeffers S., et al. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology. 2008; 372: 127-135. https://doi.org/10.1016/j.virol.2007.09.045
  13. Weinheimer V.K., Becher A., Tonnies M., et al. Influenza A viruses target type II pneumocytes in the human lung. J. Infect. Dis. 2012; 206: 1685-1694. https://doi.org/10.1093/infdis/jis455
  14. Delpino M.V., Quarleri J. SARS-CoV-2 pathogenesis: imbalance in the renin- angiotensin system favors lung fibrosis. Front. Cell. Infect. Microbiol. 2020; 10: 340. https://doi.org/10.3389/fcimb.2020.00340
  15. Коган Е.А., Березовский Ю.С., Проценко Д.Д. и др. Патологическая анатомия инфекции, вызванной SARS-CoV-2. Судебная медицина. 2020; 6(2): 8-30. https://doi.org/10.19048/2411-8729-2020-6-2-8-30
  16. Ni W., Yang X., Yang D., et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care Lond Engl. 2020; 24: 422. https://doi.org/10.1186/s13054-020-03120-0
  17. Leng L., Cao R., Ma J., et al. Pathological features of COVID-19-associated lung injury: a preliminary proteomics report based on clinical samples. Signal Transduct Target Ther. 2020; 5: 240. https://doi.org/10.1038/s41392-020-00355-9
  18. Meyer K.C. Pulmonary fibrosis, part I: epidemiology, pathogenesis, and diagnosis. Expert Rev Respir Med. 2017; 11: 343-359. https://doi.org/10.1080/17476348.2017.1312346
  19. Richeldi L., Collard H.R., Jones M.J. Idiopathic pulmonary fibrosis. Lancet Lond Engl. 2017 389: 1941-1952. https://doi.org/10.1016/S0140-6736(17)30866-8
  20. Vall'ee A., Lecarpentier Y. TGF-Р in fibrosis by acting as a conductor for contractile properties of myofibroblasts. Cell Biosci. 2019; 9: 98. https://doi.org/10.1186/s13578-019-0362-3
  21. Wynn T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2008;214:199-210. https://doi.org/10.1002/path.2277
  22. Pardo A., Cabrera S., Maldonado M., Selman M. Role of matrix metalloproteinases in the pathogenesis of idiopathic pulmonary fibrosis. Respir. Res. 2016; 17: 23. https://doi.org/10.1186/s12931-016-0343-6
  23. George P.M., Wells A.U., Jenkins R.G. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir. Med. 2020; https://doi.org/10.1016/S2213-2600(20)30225-3
  24. LeaskA. COVID-19: is fibrosis the killer? J. Cell. Commun. Signal. 2020; 14: 255. https://doi.org/10.1007/s12079-020-00569-0
  25. Wu C., Chen X., Cai Y., et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020; https://doi.org/10.1001/jamainternmed.2020.0994
  26. Yu M., Liu Y., Xu D., et al. Prediction of the development of pulmonary fibrosis using serial thin-section CT and clinical features in patients discharged after treatment for COVID-19 pneumonia. Korean J. Radiol. 2020; 21: 746-755. https://doi.org/10.3348/kjr.2020.0215
  27. MGH FLARE. June 2 - will COVID-19 cause more IPF? https://us19.campaignarchive.com/?u=ef98149bee3f299584374540a&id=737fad9de0. (Accessed 28 November 2020).
  28. Ojo A.S., Balogun S.A., Williams O.T., Ojo O.S. Pulmonary fibrosis in COVID-19 survivors: predictive factors and risk reduction strategies. Pulm Med. 2020;2020:6175964. https://doi.org/10.1155/2020/6175964
  29. Wigen J., Lofdahl A., Bjermer L., et al. Converging pathways in pulmonary fibrosis and Covid-19 - the fibrotic link to disease severity. Respir Med X. 2 2020; 100023. https://doi.org/10.1016/j.yrmex.2020.100023
  30. Kobayashi T., Tanaka K., Fujita T., et al. Bidirectional role of IL-6 signal in pathogenesis of lung fibrosis. Respir. Res. 2015; 16: 99. https://doi.org/10.1186/s12931-015-0261-z
  31. Пустоветова М.Г., Чикинев Ю.А., Пионтковская К.А. Молекулярно-клеточные механизмы развития фиброза легких и спонтанного пневмоторакса. Бюллетень СО РАМН. 2014; 34(5): 17-21
  32. Minshall E.M., Leung D.Y., Martin R.J., et al. Eosinophil-associated TGF-beta1 mRNA expression and airways fibrosis in bronchial asthma. Am. J. Respir. Cell Mol. Biol. 1997; 17: 326-333. https://doi.org/10.1165/ajrcmb.17.3.2733
  33. Khalil N., O’Connor R.N., Flanders K.C., et al. TGF-beta 1, but not TGF-beta 2 or TGF-beta 3, is differentially present in epithelial cells of advanced pulmonary fibrosis: an immunohis-tochemical study. Am. J. Respir. Cell Mol. Biol. 1996; 14:131138. https://doi.org/10.1165/ajrcmb.14.2.8630262
  34. Khalil N., Parekh T. V., O ’Connor R., et al. Regulation of the effects of TGF-beta 1 by activation of latent TGF-beta 1 and differential expression of TGF-beta receptors (T beta R-I and T beta R-II) in idiopathic pulmonary fibrosis. Thorax. 2001; 56:907-915. https://doi.org/10.1136/thorax.56.12.907
  35. Roberts A.B., Piek E., Bottinger E.P., et al. Is Smad3 a major player in signal transduction pathways leading to fibrogenesis? Chest. 2001; 120: 43S-47S. https://doi.10.1378/chest.120.1_suppl.s43-a
  36. Leask A., Abraham D.J. TGF-beta signaling and the fibrotic response. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2004; 18:816-827. https://doi.org/10.1096/fj.03-1273rev
  37. Kandasamy M., Lehner B., Kraus S., et al. TGF-beta signalling in the adult neurogenic niche promotes stem cell quiescence as well as generation of new neurons. J. Cell. Mol. Med. 2014; 18: 1444-1459. https://doi.org/10.1111/jcmm.12298
  38. Venkataraman T., Frieman M.B. The role of epidermal growth factor receptor (EGFR) signaling in SARS corona-virus-induced pulmonary fibrosis. Antivir. Res. 2017; 143: 142-150. https://doi.org/10.1016/j.antiviral.2017.03.022
  39. Watanabe-Takano H., Takano K., Hatano M., et al. DA-Raf-mediated suppression of the Ras-ERK pathway is essential for TGF-P1-induced epithelial-mesenchymal transition in alveolar epithelial type 2 cells. PLoS One. 2015; 10:e0127888. https://doi.org/10.1371/journal.pone.0127888
  40. Zhao X., Nicholls J.M., Chen Y.G. Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-beta signaling. J. Biol. Chem. 2008; 283: 3272-3280. https://doi.org/10.1074/jbc.M708033200
  41. Allen J.T., Knight R.A., Bloor C.A., et al. Enhanced insulinlike growth factor binding protein-related protein 2 (connective tissue growth factor) expression in patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am. J. Respir. Cell Mol. Biol. 1999; 21: 693-700. https://doi.org/10.1165/ajrcmb.21.6.3719
  42. Torr E.E., Ngam C.R., Bernau K., et al. Myofibroblasts exhibit enhanced fibronectin assembly that is intrinsic to their contractile phenotype. J. Biol. Chem. 2015; 290: 6951-6961. https://doi.org/10.1074/jbc.M114.606186
  43. Desmouli'ere A., Geinoz A., Gabbiani F., et al. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 1993; 122: 103-111. https://doi.org/10.1083/jcb.122.1.103
  44. Rajasekaran S., Vaz M., Reddy S.P. Fra-1/AP-1 transcription factor negatively regulates pulmonary fibrosis in vivo. PLoS One. 2012; 7:e41611. https://doi.org/10.1371/journal.pone.0041611
  45. Shi K., Jiang J., Ma T., et al. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice. Respir. Physiol. Neurobiol. 2014; 190: 113117. https://doi.org/10.1016/j.resp.2013.09.011
  46. Pattarayan D., Rajarajan D., Ayyanar S., et al. C-phycocyanin suppresses transforming growth factor-P1-induced epithelial mesenchymal transition in human epithelial cells. Pharmacol Rep PR. 2017; 69: 426-431. https://doi.org/10.1016/j.pharep.2016.12.013
  47. Pattarayan D., Thimmulappa R.K., Ravikumar V., Rajasekaran S. Diagnostic potential of extracellular microRNA in respiratory diseases. Clin. Rev. Allergy Immunol. 2018; 54: 480-492. https://doi.org/10.1007/s12016-016-8589-9
  48. Rajasekaran S., Rajaguru P., Sudhakar Gandhi P.S. MicroRNAs as potential targets for progressive pulmonary fibrosis. Front. Pharmacol. 2015; 6: 254. https://doi.org/10.3389/fphar.2015.00254
  49. Myllarniemi M., Kaarteenaho R. Pharmacological treatment of idiopathic pulmonary fibrosis - preclinical and clinical studies of pirfenidone, nintedanib, and N-acetylcysteine. EurClinRespir J. 2015; 2. https://doi.org/10.3402/ecrj.v2.26385
  50. Margaritopoulos G.A., Vasarmidi E., Antoniou K.M. Pirfeni-done in the treatment of idiopathic pulmonary fibrosis: an evidence-based review of its place in therapy. Core Evid 2016; 11: 11-22. https://doi.org/10.2147/CE.S76549
  51. Kato M., Sasaki S., Nakamura T., et al. Gastrointestinal adverse effects of nintedanib and the associated risk factors in patients with idiopathic pulmonary fibrosis. Sci. Rep. 2019; 9: 12062. https://doi.org/10.1038/s41598-019-48593-4
  52. Zhang H. A Randomized Open-label Study to Evaluate the Efficacy and Safety of Pirfenidone in Patients With Severe and Critical Novel Coronavirus Infection. dinic. altrials. Gov. 2020.
  53. Pleasants R., Tighe R.M. Management of idiopathic pulmonary fibrosis. Ann. Pharmacother. 2019; 53: 1238-1248. https://doi.org/10.1177/1060028019862497
  54. Tang J., Yan H., Zhuang S. Histone deacetylases as targets for treatment of multiple diseases. Clin. Sci (Lond.). 2013 jun; 124(11): 651-662. https://doi.org/1042/CS20120504
  55. Glenisson W., Castronovo V., Waltregny D. Histone deacetylase 4 is required for TGFbeta1-induced myofibroblastic differentiation. Biochim. Biophys. Acta. 2007; 1773: 15721582. https://doi.org/10.1016/j.bbamcr.2007.05.016
  56. Guo W., Shan B., Klingsberg R.C., et al. Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by his-tone deacetylase inhibition. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2009; 297: L864-L870. https://doi.org/10.1152/aj-plung.00128.2009
  57. Korfei M., Skwarna S., Henneke I., et al. Aberrant expression and activity of histone deacetylases in sporadic idiopathic pulmonary fibrosis. Thorax. 2015; 70: 1022-1032. https://doi.org/10.1136/thoraxjnl-2014-206411
  58. Barter M.J., Pybus L., Litherland G.J., et al. HDAC-mediated control of ERK- and PI3K-dependent TGF-P-induced extracellular matrix-regulating genes. Matrix. Biol. J. Int. Soc. MatrixKi Biol. 2010; 29: 602-612. https://doi.org/10.1016/j.matbio.2010.05.002
  59. Jones D.L., Haak A.J., Caporarello N., et al. TGFP-induced fibroblast activation requires persistent and targeted HDAC-mediated gene repression. J. Cell Sci. 2019; 132. https://doi.org/10.1242/jcs.233486
  60. Saito S., Zhuang Y., Suzuki T., et al. HDAC8 inhibition ameliorates pulmonary fibrosis. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2019; 316: L175-L186. https://doi.org/10.1152/ajplung.00551.2017
  61. Yoon S., Kang G., Eom G.H. HDAC inhibitors: therapeutic potential in fibrosis-associated human diseases. Int. J. Mol. Sci. 2019; 20. https://doi.org/10.3390/ijms20061329
  62. Coward W.R., Watts K., Feghali-Bostwick C.A., et al. Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis. Mol. Cell. Biol. 2009; 29: 4325-4339. https://doi.org/10.1128/MCB.01776-08
  63. Huang S.K., Scruggs A.M., Donaghy J., et al. Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell. Death Dis. 2013;4:e621. https://doi.org/10.1038/cddis.2013.146
  64. Saito S., Zhuang Y., Shan B., et al. Tubastatin ameliorates pulmonary fibrosis by targeting the TGFP-PI3K-Akt path way. PLoS One. 2017; 12:e0186615. https://doi.org/10.1371/journal.pone.0186615
  65. Korfei M., Stelmaszek D., MacKenzie B., et al. Comparison of the antifibrotic effects of the pan-histone deacetylase-inhibi-tor panobinostat versus the IPF-drug pirfenidone in fibroblasts from patients with idiopathic pulmonary fibrosis. PLoS One. 2018; 13:e0207915. https://doi.org/10.1371/journal.pone.0207915

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies