Characteristics of ferroptose inductors(review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Ferroptosis is an iron-dependent non-apoptotic form of regulated cell death. In 2012, the anti-cancer activity of erastin was shown, based on the induction of a new type of cell death, which is prevented by iron chelators and lipophilic antioxidants. The term "ferroptosis" has been proposed to characterize this iron-dependent, non-apoptotic form of cell death. The purpose of this work is to evaluate and classify the range of compounds capable of inducing ferroptosis in various cell types.

Glutathione (GSH), a common intracellular antioxidant, is required for the activity of various antioxidant enzymes (eg, GPX4). Erastine inhibits the uptake of cystine by the cystine/glutamate antiporter, creating a defect in the cell's antioxidant defenses and leading to iron-dependent oxidative death.

GPX4 is a selenium-containing enzyme that catalyzes the reduction of organic hydroperoxides and lipid peroxides by reduced glutathione. The study revealed two promising compounds, named RSL3 and RSL5 by the authors.

Tert-butyl hydroperoxide (t-BuOOH) is such a lipid peroxide analog and is widely regarded as a lipid peroxidation stimulant. Exposure to t-BuOOH resulted in a ferrostatin-1 and liprostatin-1 sensitive increase in lipid peroxidation.

An excess of non-heme iron (Fe2+ and Fe3+) causes ferroptosis. Live/dead cell viability analysis showed that Fe(III)-citrate, erastin and RSL3 induce cell death. Co-treatment with ferrostatin-1, an inhibitor of ferroptosis, inhibited cell death.

Other materials can cause ferroptosis by inducing lipid peroxidation. Mitochondrial DNA damaging drugs such as zalcitabine induce autophagy-dependent ferroptosis in human pancreatic cancer cells. The implementation of the model of cell death in the form of ferroptosis is highly dependent on the state of cellular metabolism and degradation systems, such as autophagy, which form a complex network for the formation of oxidative stress. Pharmacological induction of ferroptosis is a promising direction in cancer chemotherapy.

Full Text

Restricted Access

About the authors

A. A. Nikolaev

Federal State Budgetary Educational Institution of Higher Education "Astrakhan State Medical University" of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: chimnik@mail.ru

Dr.Sc. (Med.), Professor

Russian Federation, Astrakhan

M. V. Ushakova

Federal State Budgetary Educational Institution of Higher Education "Astrakhan State Medical University" of the Ministry of Health of the Russian Federation

Email: chimnik@mail.ru

Ph.D. (Biol.), Associate Professor

Russian Federation, Astrakhan

References

  1. Dixon S.J., Lemberg K..M, Lamprecht M.R., Skouta R., Zaitsev E.M., Gleason C.E., Cantley A., Yang W.S., Morrison B., Stock-well B.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149(5): 1060–1072. doi: 10.1016/j.cell.2012.03.042.
  2. Dolma S., Lessnick S.L., Hahn W.C., Stockwell B.R. Iden-tification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003; 3 (3): 285–296. doi: 10.1016/S1535-6108(03)00050-3.
  3. Kang R., Tang D. Autophagy and ferroptosis - what’s the connection? Curr Pathobiol Rep. 2017; 5(2): 153–159. doi: 10.1007/s40139-017-0139-5.
  4. Zhang Y., Tan H., Daniels J.D., Zandkarimi F., Liu H., Brown L.M., Uchida K., O'Connor O.A., Stockwell B.R. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol. 2019; 26(5): 623–633. doi: 10.1016/j.chembiol.2019.01.008.
  5. Han P., Wang X., Zhou T., Cheng J., Wang C., Sun F., Zhao X. Inhibition of ferroptosis attenuates oligospermia in male Nrf2 knockout mice. Free Radic Biol Med. 2022; 193(Pt1): 421–429. doi: 10.1016/j.freeradbiomed.2022.10.314.
  6. Luckij D.L., Mahmudov R.M., Luckaya A.M., Vybornov S.V., Nikolaev A.A., Kalashnikov E.S., Nikulina D.M., Lozovskij V.V., Lozovskij V.V., Shishkina L.M. Vliyanie bessimptomnogo i legkogo techeniya COVID-19 na harakteristiki spermy. Klinicheskaya praktika. 2022; 13(3): 17–24.(In Russ.)
  7. Yang W.S., Sri Ramaratnam R., Welsch M.E., Shimada K., Skouta R., Viswanathan V.S., Cheah J.H., Clemons P.A., Shamji A.F., Clish C.B., Brown L.M., Girotti A.W., Cornish V.W., Schreiber S.L., Stockwell B.R. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014; 156(1–2): 317–331. doi: 10.1016/j.cell.2013.12.010.
  8. Eaton J.K., Furst L., Ruberto R.A., Hilpmann A., Ryan M.J., Zimmermann K., Cai L.L., Niehues M., Badock V., Kramm A., Chen S., Hillig R.C., Clemons P.A., Gradl S., Montagnon C., Lazarski K.E., Christian S., Bajrami B., et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat Chem Biol. 2020; 16(5): 497–506.
  9. Sun Y., Berleth N., Wu W., Schlütermann D., Deitersen J., Stuhldreier F., Berning L., Friedrich A., Akgün S., Mendiburo M.J., Wesselborg S., Conrad M., Berndt C., Stork B. Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells. Cell Death Dis. 2021; 12(11): 1028–1042. doi: 10.1038/s41419-021-04306-2.
  10. Wenz C., Faust D., Linz B., Turmann C., Nikolova T., Bertin J., Gough P., Wipf P., Schröder A.S., Krautwald S., Dietrich C.t-BuOOH induces ferroptosis in human and murine cell lines. Arch Toxicol. 2018; 92(2): 759–775. doi: 10.1007/s00204-017-2066-y.
  11. Gaschler M.M., Andia A.A., Liu H., et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol. 2018; 14(5): 507–515. doi: 10.1038/s41589-018-0031-6.
  12. Baba Y., Higa J.K., Shimada B.K., Horiuchi K.M., Suhara T,, Kobayashi M,, Woo J.D., Aoyagi H., Marh K.S., Kitaoka H., Matsui T. Protective effects of the mechanistic target of ra-pamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2018; 314 (3): H659–H668. doi: 10.1152/ajpheart.00452.2017.
  13. Wang H., An P., Xie E., Wu Q., Fang X., Gao H., Zhang Z., Li Y., Wang X., Zhang J., Li G., Yang L., Liu W., Min J., Wang F. Characterization of ferroptosis in murine models of hemochro-matosis. Hepatology. 2017; 66(2): 449–465. doi: 10.1002/hep.29117.
  14. Hassannia B., Wiernicki B., Ingold I., et al. Nano-targeted in-duction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest. 2018; 128(8): 3341–3355. doi: 10.1172/JCI99032.
  15. Sui S., Zhang J., Xu S., Wang Q., Wang P., Pang D. Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells. Cell Death Dis. 2019; 10(5): 331. doi: 10.1038/s41419-019-1564-7.
  16. Sui S., Zhang J., Xu S., Wang Q., Wang P., Pang D. Ferri-tinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells. Cell Death Dis. 2019; 10(5): 331. doi: 10.1038/s41419-019-1564-7.
  17. Li C., Zhang Y., Liu J., Kang R., Klionsky D.J., Tang D. Mito-chondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy. 2020; 18:1–13. doi: 10.1080/15548627.2020.1739447.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies