The current state of research on the chemical composition of some representatives of the genus Fagopyrum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Relevance. In recent decades, the attention of researchers has been drawn to plants characterized by a high ability to form secondary metabolites related to polyphenolic compounds. The greatest interest is caused by agricultural crops that have a sufficient raw material base. For example, representatives of the genus Buckwheat (Fagopyrum) have high dietary, taste and nutritional properties, and are also promising sources of valuable biologically active compounds (BAC), macro- and microelements. Analysis and generalization of research information of domestic and foreign scientists on the chemical composition of BAS of buckwheat species: buckwheat (Fagopyrum esculentum) and Tatar buckwheat (Fagopyrum tataricum), perennial buckwheat (Fagopyrum dibotrys) and red-stem buckwheat (Fagopyrum rubricaulis).

Methodology. For informational and analytical search of the necessary material for writing a review article, such abstract databases as ResearchGate, PubMed, Web of Science, ScienceDirect, Scopus, Google Scholar, eLibrary were used. The search was carried out by publications for the period from 2000 to 2022. The following words and phrases were selected as parameters for the selection of literature: buckwheat; Fagopyrum rubricaulis; Fagopyrum esculentum; Fagopyrum tataricum; Fagopyrum dibotrys; rutin; phenylpropanoids; tannins.

Results. The article presents generalized information about the chemical composition of raw materials of some representatives of the genus Fagopyrum. The main group of BAC is flavonoids, also phenylpropanoids, tannins, phagopyritols, fatty acids; vitamins have been identified and identified in buckwheat raw materials.

Conclusion. As a result of the analysis of the data of modern scientific literature, it was found that the types of buckwheat: Fagopyrum rubricaulis; Fagopyrum esculentum; Fagopyrum tataricum; Fagopyrum dibotrys, have a wide range of BAC. The main biologically active groups of buckwheat raw materials are flavonoids, phenylpropanoids, tannins, fatty acids, steroids. The results of this review can be useful for determining promising directions for the development of medicines based on buckwheat extracts.

Full Text

Restricted Access

About the authors

A. S. Fednina

Penza State University

Email: smitishev@mail.ru

Student, Department of General and Clinical Pharmacology

Russian Federation, Penza

M. G. Makartseva

Penza State University

Email: smitishev@mail.ru

Student, Department of General and Clinical Pharmacology

Russian Federation, Penza

E. E. Kurdyukov

Penza State University

Email: smitishev@mail.ru

Ph.D. (Pharm.), Associate Professor, Department of General and Clinical Pharmacology

Russian Federation, Penza

I. Ya. Moiseeva

Penza State University

Email: smitishev@mail.ru

Dr.Sc. (Med.), Professor, Department of General and Clinical Pharmacology

Russian Federation, Penza

D. G. Elistratov

LLC "Parafarm"

Email: smitishev@mail.ru

Director

Russian Federation, St. Petersburg

A. V. Mitishev

Penza State University

Author for correspondence.
Email: smitishev@mail.ru

Senior Lecturer, Department of General and Clinical Pharmacology

Russian Federation, Penza

References

  1. Zhang Zhan-Lu, Meiliang Z., Tang Y., Fa-Liang L., Yi-Xiong T., Ji-Rong S., Wen-Tong X., Zhan-Min S. Bioactive compounds in functional buckwheat food. Food Research International. 2012; 49: 389–395. doi: 10.1016/j.foodres.2012.07.035.
  2. Ye Y., Li P., Zhou J., He J., Cai J. The improvement of sensory and bioactive properties of yogurt with the introduction of Tartary buckwheat. Foods. 2022; 11: 1774. doi: 10.3390/foods11121774.
  3. Кузьмичева Н.А., Руденко А.В., Мозолевская Е.А. Влияние микроэлементов на накопление флавоноидов в проростках гречихи посевной. Вестник фармации. 2005; 2:17–24 (Kuz'micheva N.A., Rudenko A.V., Mozolevskaja E.A. Vlijanie mikrojelementov na nakoplenie flavonoidov v prorostkah grechihi posevnoj. Vestnik farmacii. 2005; 2:17–24).
  4. Takanori O., Chengyun Li. Classification and systematics of the Fagopyrum species. Breeding Science. 2020; 1: 70. doi: 10.1270/jsbbs.19028.
  5. Janovská D., Jágr M., Svoboda P., Dvořáček V., Meglič V., Čepková P. Breeding buckwheat for nutritional quality in the Czech Republic. Plants. 2021; 10: 1262. doi: 10.3390/plants10071262.
  6. Hornyák M., Dziurka M., Kula‐Maximenko M., Pastuszak J., Szczerba A., Szklarczyk M., Płazek A. Photosynthetic efficiency, growth and secondary metabolism of common buckwheat (Fagopyrum esculentum Moench) in different controlled‐environment production systems. Sci. Rep. 2022; 12: 257. doi: 10.1038/s41598‐021‐04134‐6.
  7. Клыков А.Г. Биологическая и селекционная ценность исходного материала гречихи с высоким содержанием рутина. Сельскохозяйственная биология. 2010; 3: 49–53 Klykov A.G. Biologicheskaja i selekcionnaja cennost' ishodnogo materiala grechihi s vysokim soderzhaniem rutina. Sel'skohozjajstvennaja biologija. 2010; 3: 49–53).
  8. Kreft I., Germ M., Golob A., Vombergar B., Vollmannová A., Kreft S., Luthar Z. Phytochemistry, Bioactivities of Metabolites, and Traditional Uses of Fagopyrum tataricum. Molecules. 2022; 27: 7101. doi: 10.3390/molecules27207101 8.
  9. Jianglin Z., Lan J., Xiaohui T., Lianxin P., Xing L., Gang Z., Zhong L. Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum. Molecules. 2018; 23: 182. doi: 10.3390/molecules23010182.
  10. Zhu F. Chemical composition and health effects of Tartary buckwheat. Food Chem. 2016; 203: 231–245. doi: 10.1016/j.foodchem.2016.02.050.
  11. Zhang S., Chen S., Geng S., Liu C., Ma H., Liu B. Effects of Tartary Buckwheat Bran Flour on Dough Properties and Quality of Steamed Bread. Foods. 2021; 10: 2052.
  12. Luo A., Peng P., Fei W., Yang L., Fan Y. Isolation and antioxidant activity (in vitro and in vivo) of the flavonoid from Tartarian-buckwheat. Journal of Scientific and Innovative Research. 2014; 3: 168–172. doi: 10.31254/jsir.2014.3210.
  13. Vombergar B., Luthar Z. The concentration of flavonoids, tannins and crude proteins in grain fractions of common buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat (Fagopyrum tataricum Gaertn.). Folia Biol. Geol. 2018; 59: 101–157. doi: 10.3986/fbg0047.
  14. Kočevar G.N., Stojilkovski K., Kreft S., Park C.H., Kreft I. Determination of fagopyrins, rutin and quercetin in Tartary buckwheat products. LWT–Food Sci. Technol. 2017; 79: 423–427. doi: 10.1016/j.lwt.2017.01.068.
  15. Анисимова М.М., Куркин В.А., Рыжов В.М., Тарасенко Л.В. Анатомо-морфологическое исследование травы гречихи посевной (Fagopyrum sagillatum Gilib.). Медицинский альманах. 2010; 3 (12): 204–206 (Anisimova M.M., Kurkin V.A., Ryzhov V.M., Tarasenko L.V. Anatomo-morfologicheskoe issledovanie travy grechihi posevnoj (Fagopyrum sagillatum Gilib.). Medicinskij al'manah. 2010; 3 (12): 204–206).
  16. Rui J., Hua-Qiang L., Chang-Ling H., Yi-Ping J., Lu-Ping Q., Cheng-Jian Z. Phytochemical and Pharmacological Profiles of Three Fagopyrum Buckwheats. Int. J. Mol. Sci. – 2016; 17: 589. doi: 10.3390/ijms17040589.
  17. Huda M.N., Lu S., Jahan T., Ding M., Jha R., Zhang K., Zhang W., Georgiev M.I., Park S.U., Zhou M. Treasure from garden: Bioactive compounds of buckwheat. Food Chem. 2021; 335: 127653. doi: 10.1016/j.foodchem.2020.127653.
  18. Liu Y., Peng X.J., Chen X.Z. A Comprehensive Review of Natu-ral Flavonoids with Anti-SARS-CoV-2 Activity. Molecules. 2023; 28: 2735. doi: 10.3390/molecules28062735.
  19. Xiong H.H., Lin S.Y., Chen L.L., Ouyang K.H., Wang W.J. The Interaction between Flavonoids and Intestinal Microbes: A Review. Foods. 2023; 12: 320. DOI: 10.3390/ foods12020320.
  20. Matsui K., Walker A.R. Biosynthesis and regulation of flavonoids in buckwheat. Breed. Sci. 2019; 70: 74–84. doi: 10.1270/jsbbs.19041.
  21. Vombergar B., Škrabanja V., Germ M. Flavonoid concentration in milling fractions of Tartary and common buckwheat. Fagopyrum. 2020; 37: 11–21. doi: 10.3986/fag0013.
  22. Танашкина Т.В., Пьянкова А.Ф., Приходько Ю.В. Гречишные травяные чайные напитки: сырье, способы получения и оценка биологической активности. Техника и технология пищевых производств. 2021; 3: 564–573 (Tanashkina T.V., P'jankova A.F., Prihod'ko Ju.V. Grechishnye travjanye chajnye napitki: syr'e, sposoby poluchenija i ocenka biologicheskoj aktivnosti. Tehnika i tehnologija pishhevyh proizvodstv. 2021; 3: 564–573).
  23. Aubert L., Konrádová D., Kebbas S., Barris S., Quinet M. Comparison of High Temperature Resistance in Two Buckwheat Species Fagopyrum esculentum and Fagopyrum tataricum. J. Plant Physiol. 2020; 1: 251.
  24. Borovaya S.A., Klykov A.G. Some aspects of flavonoid biosynthesis and accumulation in buckwheat plants. Plant Biotechnol. Rep. 2020; 14: 213–225. doi: 10.1007/s11816‐020‐00614‐9.
  25. Сабитов А.М., Магафурова Ф.Ф., Хуснутдинов В.В. О новых направлениях селекции гречихи в Башкирском НИИСХ. Достижения науки и техники АПК. 2010; 3: 23–25 (Sabitov A.M., Magafurova F.F., Husnutdinov V.V. O novyh napravlenijah selekcii grechihi v Bashkirskom NIISH. Dostizhenija nauki i tehniki APK. 2010; 3: 23–25).
  26. Rui J., Hua-Qiang L., Yi-Ping J., Lu-Ping Q., Zheng C. Phytochemical and Pharmacological Profiles of Three Fagopyrum Buckwheats. International Journal of Molecular Sciences. 2016; 17: 589. doi: 10.3390/ijms17040589.
  27. Li J., Yang P., Yang Q., Gong X., Ma H., Dang K., Chen G., Gao X., Fenf B. Analysis of flavonoid metabolites in buckwheat leaves using UPLC‐ESI‐MS/MS. Molecules. 2019; 24: 1310. doi: 10.3390/molecules24071310.
  28. Suzuki T., Morishita T., Takigawa S., Noda T., Ishiguro K., Otsuka S. Development of Novel Detection Method for Rutinosidase in Tartary Buckwheat (Fagopyrum tataricum Gaertn.). Plants. 2022; 11: 320. doi: 10.3390/plants11030320.
  29. Borgonovi S., Chiarello E., Pasini F., Picone G., Marzocchi, S., Capozzi F., Bordoni A., Barbiroli A., Marti A., Iametti S., Nunzio M. Effect of Sprouting on Biomolecular and Antioxi-dant Features of Common Buckwheat (Fagopyrum esculentum). Foods. 2023; 12: 2047. doi: 10.3390/foods12102047.
  30. Wang K., Zhang Y., Yang C. Antioxidant phenolic constituents from Fagopyrum dibotrys. J. Ethnopharmacol. 2005; 99: 259–264.
  31. Li F.H., Zhang X.L., Zheng S.J., Lu K., Zhao G.H., Ming J. The composition, antioxidant and antiproliferative capacities of phenolic compounds extracted from tartary buckwheat bran (Fagopyrum tartaricum (L.) Gaerth). J. Funct. Foods. 2016; 22: 145–155.
  32. Watanabe M. Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats. J. Agric. Food Chem. 2000; 46: 839–845.
  33. Ruan J., Zhou Y., Yan J., Zhou M., Woo S.H., Weng W. Tartary buckwheat: an under-utilized edible and medicinal herb for food and nutritional security. Food Rev Int. 2020; 1: 1734610. doi: 10.1080/87559129.2020.
  34. Zheng C.J., Hu C.L., Ma X.Q., Peng C., Zhang H. Cytotoxic phenylpropanoid glycosides from Fagopyrum tataricum (L.) gaertn. Food Chem. 2012; 132: 433–438.
  35. Ren Q., Wu C., Ren Y., Zhang J. Characterization and identification of the chemical constituents from tartary buckwheat (Fagopyrum tataricum gaertn) by high performance liquid chromatography/photodiode array detector/linear ion trap FTICR hybrid mass spectrometry. Food Chem. 2013; 136: 1377–1389.
  36. Dziedzic K., Góreckа D., Szwengiel A., Sulewska H., Kreft I., Gujska E., Walkowiak J. The Content of Dietary Fibre and Polyphenols in Morphological Parts of Buckwheat (Fagopyrum tataricum). Plant Foods for Human Nutrition. 2018; З: 1–7. doi: 10.1007/s11130-018-0659-0.
  37. Jing R., Li H.Q., Hu C.L., Jiang Y.P., Qin L.P., Zheng C.J. Phytochemical and pharmacological profles of three Fagopyrum buckwheats. Int J Mol Sci. 2016; 17(4): 589.
  38. Obendorf R.L., Steadman K.J., Fuller D.J., Horbowicz M., Lewisc B.A. Molecular structure of fagopyritol A1(O-α-D-galactopyranosyl-(1N3)-D-chiro-inositol) by NMR. Carbohydr. Res. 2000; 328: 623–627.
  39. Steadmana K.J., Fullerb D.J., Obendorfa R.L. Purification and molecular structure of two digalactosyl D-chiroinositols and two trigalactosyl D-chiroinositols from buckwheat seeds. Carbohydr. Res. 2001; 331: 19–25.
  40. Wu W., Li Z., Qin F., Qiu J. Anti-diabetic effects of the soluble dietary fiber from tartary buckwheat bran in diabetic mice and their potential mechanisms. Food Nutr. Res. 2021; 65: 4998.
  41. Zhang C., Zhang R., Li Y.M., Liang N., Zhao Y., Zhu H., He Z., Liu J., Hao W., Jiao R. Cholesterol-Lowering Activity of Tartary Buckwheat Protein. J. Agric. Food Chem. 2017; 65: 1900–1906.
  42. Shao M., Yang Y.H., Gao H.Y., Wu B., Wang L.B., Wu L.J. Studies on the chemical constituents of Fagopyrum dibotrys. J. Shenyang Pharm. Univ. 2005; 22: 100–102.
  43. Dziedzic K., Kurek S., Mildner–Szkudlarz S., Kreft I., Walkowi-ak J. Fatty acids profile, sterols, tocopherol and squalene content in Fagopyrum tataricum seed milling fractions. J. Cereal Sci. 2020; 96: 103–118.
  44. Noda T., Ishiguro K., Suzuki T., Morishita T. Physicochemical Properties and in Vitro Digestibility of Starch from a Trace-Rutinosidase Variety of Tartary Buckwheat “Manten-Kirari”. Molecules. 2022; 27: 61–72.
  45. Zhu F. Buckwheat proteins and peptides: Biological functions and food applications. Trends in Food Science & Technology. 2021; 9: 187–192.
  46. Sinkovič L., Kokalj D., Vidrih R., Meglic V. Milling fractions fatty acid composition of common (Fagopyrum esculentum Moench) and tartary (Fagopyrum tataricum (L.) Gaertn) buckwheat. Journal of Stored Products Research. 2020; 85: 101551. doi: 10.1016/j.jspr.2019.101551.
  47. Peng L.X., Zou L., Tan M.L., Deng Y.Y., Yan J., Yan Z.Y., Zhao G. Free amino acids, fatty acids and phenolic compounds in Tartary buckwheat of different hull colour. Czech J. Food Sci. 2017; 35: 214–222.
  48. Dziadek K., Kopeć A., Piątkowska E., Leszczyńska T., Pisulewska E., Witkowicz R., Bystrowska B., Francik R. Identification of polyphenolic compounds and determination of antioxidant activity in extracts and infusions of buckwheat leaves. European Food Research and Technology. 2017; 244: 333–343.
  49. Sinkoviˇc L., Sinkoviˇc D.K., Megliˇc V. Milling Fractions Com-position of Common (Fagopyrum esculentum Moench) and Tartary (Fagopyrum tataricum (L.) Gaertn.) Buckwheat. Food Chem. 2021; 365: 130459.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies