Prospects for innovative drugs for the treatment of rheumatoid arthritis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Rheumatoid arthritis is an immune-inflammatory disease with multifactorial etiology, affecting directly or indirectly all organs and systems of the body. Generally accepted standards of drug therapy of rheumatoid arthritis, represented by baseline anti-inflammatory drugs, glucocorticoids and non-steroidal anti-inflammatory drugs, have remained unchanged for a long time, but often they only alleviate or slow down the course of the disease, without curing the patient completely. Therefore, new pharmacologic targets for therapy are being actively investigated. A review of the literature concerning the development of innovative drugs for the treatment of rheumatoid arthritis is presented. The prospects for the development of new drugs based on inhibitors of Janus kinases, transcription factor NF-kB, mitogen-activated kinase p38, histone diethylase, phosphoinositide-3-kinase, low-molecular-weight antagonists of proteinase-activated PAR2 receptors, and anti-PAR-2-specific monoclonal antibodies are outlined.

Full Text

Restricted Access

About the authors

A. A. Romanycheva

Yaroslavl State Pedagogical University named after K.D. Ushinsky

Author for correspondence.
Email: kai-ren@yandex.ru

Dr.Sc. (Chem.), Associate Professor, Director of Center for Pharmaceutical Technology Transfer named after M.V. Dorogov

Russian Federation, Yaroslavl

M. K. Korsakov

Yaroslavl State Pedagogical University named after K.D. Ushinsky

Email: mkkors@mail.ru

Dr.Sc. (Chem.), Associate Professor, Director of Center for Pharmaceutical Technology Transfer named after M.V. Dorogov

Russian Federation, Yaroslavl

V. N. Fedorov

Yaroslavl State Medical University

Email: fedorov.vladimir@hotmail.com

Dr.Sc. (Med.), Professor, Head of the Scientific Department of the Institute of Pharmacy

Russian Federation, Yaroslavl

A. A. Shetnev

Yaroslavl State Pedagogical University named after K.D. Ushinsky

Email: a.shetnev@yspu.org

Ph.D. (Chem.), Head of the Pharmaceutical Development Department, Center for Pharmaceutical Technology Transfer named after M.V. Dorogov

Russian Federation, Yaroslavl

A. V. Arshinov

Yaroslavl State Medical University

Email: a_arshinov@mail.ru

Dr.Sc. (Med.), Professor, Head of Department Propaedeutics of Internal Diseases

Russian Federation, Yaroslavl

References

  1. Насонов Е.Л., Авдеева А.С., Дибров Д.А. Ревматоидный артрит как клинико-иммунологический синдром: фокус на серонега-тивный субтип заболевания. Научно-практи-ческая ревматоло-гия. 2023; 61(3): 276–291 (Nasonov E.L., Avdeeva A.S., Dibrov D.A. Revmatoidnyj artrit kak kliniko-immunologicheskij sindrom: fokus na seronegativnyj subtip zabolevanija. Nauchno-prakticheskaja revmatologija. 2023; 61(3): 276–291).
  2. Black R.J., Cross M., Haile L.M. et al. Global, regional, and national burden of rheumatoid arthritis, 1990–2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. The Lancet Rheumatology. 2023; 5(I.10): e594-e610.
  3. Prasad P., Verma S., Surbhi et al. Rheumatoid arthritis: advances in treatment strategies. Mol. Cell Biochem. 2023; 478: 69–88.
  4. Sardar S., Andersson A. Old and new therapeutics for rheumatoid arthritis: in vivo models and drug development. Immuno-pharmacology and Immunotoxicology. 2016; 38(1): 2–13.
  5. Sparks J.A. Rheumatoid arthritis. Ann. Intern Med. 2019; 170: Itc1–itc16.
  6. Scherer H.U., Haupl T., Burmester G.R. The etiology of rheumatoid arthritis. J Autoimmun. 2020; 110: 102400.
  7. Diamanti A.P., Manuela Rosado M., Lagana B. et al. Microbiota and chronic inflammato6ry arthritis: an inter-woven link. Journal of Translational Medicine. 2016; 14: 233.
  8. Клинические рекомендации – Ревматоидный артрит. 2021-2022-2023. Утверждены Минздравом РФ (Klini-cheskie rekomendacii – Revmatoidnyj artrit. 2021-2022-2023. Utverzhdeny Minzdravom RF).
  9. Tanaka Y. Current concepts in the management of rheumatoid arthritis. Korean J Intern Med. 2016; 31(2): 210–218.
  10. Calabrò A., Caterino A.L., Elefante E. et al. One year in review 2016: novelties in the treatment of rheumatoid arthritis. Clinical and Experimental Rheumatology. 2016; 34(3): 357–372.
  11. Насонов Е.Л., Лила А.М. Ревматоидный артрит: достижения и нерешенные проблемы. Терапевтический архив. 2019; 91(5): 4–7 (Nasonov E.L., Lila A.M. Revmatoidnyj artrit: dostizhenija i ne-reshennye problemy. Terapevticheskij arhiv. 2019; 91(5): 4–7).
  12. Negrei C., Bojinca V., Balanescu A. et al. Management of rheumatoid arthritis: Impact and risks of various therapeutic approaches (Review). Experimental and Therapeutic Medicine. 2016; 11: 1177–1183.
  13. Cutolo M., Shoenfeld Y., Bogdanos D.P., et al. To treat or not to treat rheumatoid arthritis with glucocorticoids? A reheated debate. Autoimmunity Reviews. 2023; 103437.
  14. Wang X., Tang Z., Huang T. et al. Withdrawal of MTX in rheumatoid arthritis patients on bDMARD/tsDMARD plus methotrexate at target: a systematic review and meta-analysis. Rheumatology. 2023; 62(I. 4): 1410–1416.
  15. Бабаева A.Р., Калинина Е.В., Бакумов П.А. Инновационная те-рапия ревматоидного артрита: алгоритмы и цели лечения. Вестник Волг. ГМУ. 2018; 2(66): 3–9 (Babaeva A.R., Kalinina E.V., Bakumov P.A. Innovacionnaja terapija revmatoidnogo artrita: algoritmy i celi lechenija. Vestnik Volg. GMU. 2018; 2(66): 3–9).
  16. Simon L.S., Taylor P.C., Choy E.H. et al. The Jak/STAT pathway: a focus on pain in rheumatoid arthritis. Semin. Arthritis Rheum. 2021; 51: 278–284.
  17. Yamaoka K. Janus kinase inhibitors for rheumatoid arthritis. Current Opinion in Chemical Biology. 2016; 32: 29–33.
  18. Freeze R., Yang K.W., Haystead T. et al. Delineation of the distinct inflammatory signaling roles of TAK1 and JAK1/3 in the CIA model of rheumatoid arthritis. Pharmacol Res Perspect. 2023; 11: e01124.
  19. Becciolini A., Di Donato E., Santilli D. et al. Filgotinib as rheumatoid arthritis therapy. Drugs Today. 2021; 57: 543–550.
  20. Tanaka Y., Izutsu H. Peficitinib for the treatment of rheumatoid arthritis: an overview from clinical trials. Expert Opin. Pharmacother. 2020; 21: 1015–1025.
  21. Кольцова Е.Н., Лукина Г.В., Шмидт Е.И. и др. Анализ неже-лательных явлений при использовании генно-инженерных био-логических и таргетных синтетических базисных противовос-палительных препаратов у пациентов с ревматоидным артри-том. РМЖ. 2022; 6: 30–35 (Kol'cova E.N., Lukina G.V., Shmidt E.I. i dr. Analiz nezhelatel'nyh javlenij pri ispol'zovanii gennoinzhenernyh biologicheskih i targetnyh sinteticheskih bazisnyh protivovospalitel'nyh preparatov u pacientov s revmatoidnym artritom. RMZh. 2022; 6: 30–35).
  22. Lu X., Hu R., Peng L. et al. Efficacy and safety of adalimumab biosimilars: current critical clinical data in rheumatoid arthritis. Front. Immunol. 2021; 12: 638444.
  23. Sanmartí R., Ruiz-Esquide V., Bastida C., Soy D. Tocilizumab in the treatment of adult rheumatoid arthritis. Immunotherapy. 2018. 10: 447–464.
  24. Crotti C., Biggioggero M., Becciolini A., Favalli E.G. Sarilumab: patientreported outcomes in rheumatoid arthritis. Patient Relat. Outcome Meas. 2018; 9: 275–284.
  25. Pombo-Suarez M., Gomez-Reino J.J. Abatacept for the treatment of rheumatoid arthritis. Expert Rev. Clin. Immunol. 2019; 15: 319–326.
  26. Takolpour S., Alesaeidi S., Darvishi M. et al. A com-prehensive re-view of rituximab therapy in rheumatoid arthritis patients. Clin. Rheumatol. 2019; 38: 2977–2994.
  27. Radu A-F., Bungau S.G. Nanomedical approaches in the realm of rheumatoid arthritis. Ageing Research Reviews. 2023; 87: 101927.
  28. Yang Y., Guo L., Wang Z. et al. Targeted silver nanoparticles for RA therapy via macrophage apoptosis and Re-polarization. Biomaterials. 2021; 264: 120390.
  29. Shen H., Jin L., Zheng Q. et al. Synergistically targeting synovium STING pathway for rheumatoid arthritis treatment. Bioact Mater. 2022; 9(24): 37–53.
  30. Zhu H., Kong B., Che J. et al. Bioinspired nanogels as cell-free DNA trapping and scavenging organelles for rheumatoid arthritis treatment. PNAS. 2023; 120(33): e2303385120.
  31. Ding Q., Hu W., Wang R. et al. Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Sig. Transduct. Target Ther. 2023; I.8: 68.
  32. Takeuchi T., Tanaka Y., Yamanaka H. et al. Efficacy and safety of olokizumab in Asian patients with moderate-to-severe rheumatoid arthritis, previously exposed to anti-TNF therapy: Results from a randomized phase II trial. Modern Rheumatology. 2015; 26(1): 15–23.
  33. Genovese M.C., van Vollenhoven R.F., Pacheco-Tena C. et al. VX-509 (Decernotinib), an oral selective JAK-3 inhibitor, in combination with methotrexate in patients with rheumatoid arthritis. Arthritis Rheumatol. 2016; 68: 46–55.
  34. Wu H., Yan S., Chen J. et al. JAK1-STAT3 blockade by JAK inhibitor SHR0302 attenuates inflammatory responses of adjuvant-induced arthritis rats and decreases Th17 and total B cells. Jt. Bone Spine. 2016; 83: 525–532.
  35. Chen H., Tao L., Liang J., Pan C., Wei H. Ubiquitin D promotes the progression of rheumatoid arthritis via activation of the p38 MAPK pathway. Mol Med Rep. 2023; 27: 53.
  36. Li J., Ye F., Xu X. et al. Targeting macrophage M1 polarization suppression through PCAF inhibition alleviates autoimmune arthritis via synergistic NF-κB and H3K9Ac blockade. J Nanobiotechnol. 2023; 21: 280.
  37. Ban J.O., Oh J.H., Kim T.M. et al. Anti-inflammatory and arthritic effects of thiacremonone, a novel sulfurcompound isolated from garlic via inhibition of NF-κB. Arthritis Res Ther. 2009. 11: R145.
  38. Xie S., Li S., Tian J. Li F. Iguratimod as a new drug for rheumatoid arthritis: current landscape. Front. Pharmacol. 2020. 11: 73.
  39. Mao D., Jiang H., Zhang F. et al. HDAC2 exacerbates rheumatoid arthritis progression via the IL-17-CCL7 signaling pathway. Environmental Toxicology. 2023; 38(7): 1743–1755.
  40. Vijaykrishnaraj M., Patil P., Ghate S.D. et al. Efficacy of HDAC inhibitors and epigenetic modulation in the amelioration of synovial inflammation, cellular invasion, and bone erosion in rheumatoid arthritis pathogenesis. International Immunopharmacology. 2023. Sep 122: 110644.
  41. Laragione T., Gulko P.S. mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis. Mol. Med. 2010; 16: 352–358.
  42. Ahmad S.F., Ansari M.A., Nadeem A. et al. STA-21, a STAT-3 inhibitor, attenuates the development and progression of inflammation in collagen antibody-induced arthritis. Immuno biology. 2017; 222: 206–217.
  43. Arneson L.C., Carroll K.J., Ruderman E.M. Bruton’s tyrosine kinase inhibition for thetreatment of rheumatoid arthritis. Immunotargets Ther. 2021; 10: 333–342.
  44. Kalogera S., He Y., Bay-Jensen A.C. et al. The activation fragment of PAR2 is elevated in serum from patients with rheumatoid arthritis and reduced in response to anti-IL6R treatment. Sci Rep 11. 2021; 24285.
  45. Kume M., Ahmad A., DeFea K. et al. Protease-Activated Receptor 2 (PAR2) Expressed in Sensory Neurons Contributes to Signs of Pain and Neuropathy in Paclitaxel Treated Mice. The Journal of Pain. 2023 Nov; 24(11): 1980–1993.
  46. Kennedy A.J., Sundstrоm L., Geschwindner S. et al. Protease-activated receptor-2 ligands reveal orthosteric and allosteric mechanisms of receptor inhibition. Commun Biol. 2020; 3, 782.
  47. Lee Y.J., Kim S.J., Kwon K.W. et al. Inhibitory effect of FSLLRY-NH2 on inflammatory responses induced by hydrogen peroxide in HepG2 cells. Arch. Pharm. Res. 2017; 40: 854–863.
  48. Yau M., Lim J., Liu L., Fairlie D.P. et al. Protease activated receptor 2 (PAR2) modulators: a patent review (2010–2015). Expert Opinion on Therapeutic Patents. 2016; 26(4):
  49. –483.
  50. Russo V., Falco L., Tessitore V. et al. Anti-Inflammatory and Anticancer Effects of Anticoagulant Therapy in Patients with Malignancy. Life. 2023; 13: 1888.
  51. Gackowski M., Madriwala B.; Studzińska R., Koba M. Novel Isosteviol-Based FXa Inhibitors: Molecular Modeling, In Silico Design and Docking Simulation. Molecules. 2023;
  52. : 4977.
  53. Kopruszinski C.M., Thornton P., Arnold J. et al. Characterization and preclinical evaluation of a protease activated receptor 2 (PAR2) monoclonal antibody as a preventive therapy for migraine. Cephalalgia. 2020; 40(14): 1535–1550.
  54. Giblin P., Boxhammer R., Desai S. et al. Fully human antibodies against the Protease-Activated Receptor-2 (PAR-2) with anti-inflammatory activity. Hum Antibodies. 2011; 20(3-4): 83–94.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Наночастица с низкомолекулярным препаратом – антагонистом C-176 [29]

Download (58KB)
3. Рис. 2. Сигнальные пути и их ингибиторы, связанные с РА [31]

Download (299KB)
4. Rice. 3. Relationship between the mechanism of action of the receptor and the therapeutic area of application of the drug – an FXa antagonist that causes the effect of PAR-2.

Download (192KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies