Patterns of selenium, zinc and magnesium metabolism in patients with inflammatory arthropathies and polyarthritis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The objective of the present study was to assess the patterns of selenium, zinc, and magnesium metabolism in patients with inflammatory arthropathies (rheumatoid arthritis, gout, psoriatic arthritis) and polyarthritis through assessment of elemental levels in blood serum and hair.

Material and methods. During a study, patients with polyarthritis (n = 128) and inflammatory arthropathies including rheumatoid arthritis (n = 100), psoriatic arthritis (n = 32), gout (n = 135), as well as 110 healthy subjects representing the control group were examined. Assessment of selenium, zinc, and magnesium levels was performed using high-sensitive method of mass spectrometry with inductively-coupled plasma.

Results. The obtained data demonstrate that the level of Se in serum of patients with rheumatoid arthritis, psoriatic arthritis, gout, and polyarthritis was %, 11%, 5%, and 9% lower compared to healthy controls. Serum Zn concentrations in patients with rheumatoid arthritis, psoriatic arthritis, and polyarthritis were also lower than in the control group by 7%, 17%, and 7%, respectively. Hair analysis revealed a significant 20% decrease in selenium levels in polyarthritis patients compared to controls. Magnesium content in hair of patients with psoriatic arthritis and gout was 41% and 46% lower when compared to healthy examinees, respectively. At the same time, hair Zn levels in examinees suffering from rheumatoid arthritis, psoriatic arthritis, gout, and polyarthritis was 7%, 13%, 15%, and 12% lower than in the control group.

Conclusion. Therefore, the results of the study demonstrate a significant decline in systemic levels of selenium, zinc, and magnesium, all possessing antioxidant and anti-inflammatory effects, in patients with polyarthritis and inflammatory arthropathies, thus indicative of their potential involvement in pathogenesis of the studied diseases.

全文:

受限制的访问

作者简介

A. Skalny

I.M. Sechenov First Moscow State Medical University (Sechenov University); People's Friendship University of Russia

Email: skalny3@microelements.ru
ORCID iD: 0000-0001-7838-1366

Dr. Sc. (Med.), Professor, Director of the Center for Bioelementology and Human Ecology; Head of the Department of Medical Elementology

俄罗斯联邦, Moscow; Moscow

T. Korobeinikova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

编辑信件的主要联系方式.
Email: tatcvetk@yandex.ru

Ph.D. (Tech.), Head of the Laboratory of Molecular Dietetics

俄罗斯联邦, Moscow

G. Morozova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: morozova0826@gmail.com
ORCID iD: 0000-0001-8600-902X

Laboratory Assistant of the Laboratory of Molecular Dietetics

俄罗斯联邦, Moscow

X. Guo

Xi'an Jiaotong University

Email: guox@mail.xjtu.edu.cn
ORCID iD: 0000-0003-4413-5022

PhD, Professor, Director of the Key Laboratory of Trace Elements and Endemic Diseases

中国, Xi'an

F. Zhang

Xi'an Jiaotong University

Email: fzhxjtu@xjtu.edu.cn
ORCID iD: 0000-0002-0427-2842

PhD, Professor, Dean of the School of Public Health

中国, Xi'an

A. Tinkov

I.M. Sechenov First Moscow State Medical University (Sechenov University); P.G. Demidov Yaroslavl State University

Email: tinkov.a.a@gmail.com
ORCID iD: 0000-0003-0348-6192

Dr. Sc. (Med.), Leading Research Scienntist of the Laboratory of Molecular Dietetics; Senior Researcher of the Laboratory of Ecobiomonitoring and Quality Control

俄罗斯联邦, Moscow; Yaroslavl

参考

  1. Fitton J., Melville A. Inflammatory arthropathies. Ortho-paedics and Trauma. 2019; 33(4): 204–211; https://doi.org/10.1016/j.mporth.2019.05.001.
  2. Галашина Е.А. Гладкова Е.В., Ульянов В.Ю. Биологи-ческие маркеры метаболизма субхондральной кости и им-мунные факторы воспаления на ранних стадиях первич-ного остеоартроза (обзор). Журнал медико-биологических исследований, 2022; 10(3): 275–286. [Galashina E.A., Gladkova E.V., Ul’yanov V.Yu. Biological Markers of Subchondral Bone Metabolism and Immune Inflammatory Factors in Early Stages of Primary Osteoarthritis (Review). Journal of Medical and Biological Research. 2022; 10 (3): 275–286. (In Russ.)]; https://doi.org/10.37482/2687-1491-Z106.
  3. Courties A., Gualillo O., Berenbaum F. et al. Metabolic stress-induced joint inflammation and osteoarthritis. Osteoarthritis and cartilage. 2015; 23(11): 1955–1965; https://doi.org/10.1016/j.joca.2015.05.016.
  4. Bortoluzzi A., Furini F., Scirè C.A. Osteoarthritis and its management – Epidemiology, nutritional aspects and environmental factors. Autoimmunity reviews. 2018; 17(11): 1097–1104; https://doi.org/10.1016/j.autrev.2018.06.002.
  5. Karlson E.W., Deane K. Environmental and gene-envi-ronment interactions and risk of rheumatoid arthritis. Rheumatic diseases clinics of North America. 2012; 38(2): 405–426; https://doi.org/10.1016/j.rdc.2012.04.002.
  6. Muzumdar S., Rothe M.J. Nutrition and psoriasis. Clinics in dermatology. 2022; 40(2), 128–134; https://doi.org/10.1016/j.clindermatol.2021.10.005.
  7. Sophocleous A. The Role of Nutrition in Osteoarthritis Development. Nutrients. 2023; 15(20): 4336; https://doi.org/10.3390/nu15204336.
  8. Скальный А.В., Зайцева И.П., Тиньков А.А. Микроэле-менты и спорт. Персонализированная коррекция эле-ментного статуса спортсменов. М.: Спорт, 2018, 288 с. [Skalny A.V., Zaitseva I.P., Tinkov A.A. Trace elements and sport. Personalized correction of elemental status of sportsmen. Moscow: Sport, 2018, 288 p. (In Russ.)].
  9. Kuang, X., Chiou, J., Lo, K. et al. Magnesium in joint health and osteoarthritis. Nutrition research (New York, N.Y.), 2021; 90: 24–35; https://doi.org/10.1016/j.nut-res.2021.03.002.
  10. Li G., Cheng T., Yu X. The Impact of Trace Elements on Osteoarthritis. Frontiers in medicine. 2021; 8: 771297; https://doi.org/10.3389/fmed.2021.771297.
  11. Kang D., Lee J., Wu C. et al. The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies. Experimental & molecular medicine. 2020; 52(8): 1198–1208; https://doi.org/10.1038/s12276-020-0408-y.
  12. Yu N., Han F., Lin X. et al. The association between serum selenium levels with rheumatoid arthritis. Biological trace element research. 2016; 172: 46–52; https://doi.org/10.1007/s12011-015-0558-2.
  13. Xin L., Yang X., Cai G. et al. Serum Levels of Copper and Zinc in Patients with Rheumatoid Arthritis: a Meta-analysis. Biological trace element research. 2015; 168(1): 1–10; https://doi.org/10.1007/s12011-015-0325-4.
  14. Zhou H., Zhang Y., Tian T. et al. Meta-analysis of the Relationship Between Zinc and Copper in Patients with Osteoarthritis. Biological trace element research. 2024: 10.1007/s12011-024-04197-2; https://doi.org/10.1007/s12011-024-04197-2.
  15. Qin J., Huang X., Wang N. et al. Supranutritional selenium suppresses ROS-induced generation of RANKL-expressing osteoclastogenic CD4+ T cells and ameliorates rheumatoid arthritis. Clinical & translational immunology. 2021; 10(9): e1338; https://doi.org/10.1002/cti2.1338.
  16. Wang N., Xie M., Lei G. et al. A Cross-Sectional Study of Association between Plasma Selenium Levels and the Prevalence of Osteoarthritis: Data from the Xiangya Osteoarthritis Study. The journal of nutrition, health & aging. 2022; 26(2): 197–202. https://doi.org/10.1007/s12603-022-1739-2.
  17. Cheng H.L., Yen C.C., Huang L.W. et al. Selenium Lessens Osteoarthritis by Protecting Articular Chondrocytes from Oxidative Damage through Nrf2 and NF-κB Pathways. International journal of molecular sciences. 2024; 25(5): 2511; https://doi.org/10.3390/ijms25052511.
  18. Su M., Zhang T., Zhao T. et al. Human gouty arthritis is associated with a distinct serum trace elemental profile. Metallomics : integrated biometal science. 2012; 4(3): 244–252; https://doi.org/10.1039/c2mt00178k.
  19. Ghaffari T., Nouri M., Saei A.A. et al. Aldehyde and xanthine oxidase activities in tissues of streptozotocin-induced diabetic rats: effects of vitamin E and selenium supplementation. Biological trace element research. 2012; 147(1-3): 217–225. https://doi.org/10.1007/s12011-011-9291-7.
  20. Serwin A.B., Wasowicz W., Gromadzinska J. et al. Selenium status in psoriasis and its relations to the duration and severity of the disease. Nutrition (Burbank, Los Angeles County, Calif.). 2003; 19(4): 301–304. https://doi.org/10.1016/s0899-9007(02)01081-x.
  21. Tekeoğlu İ., Şahin M. Z., Kamanlı A. et al. The influence of zinc levels on osteoarthritis: A comprehensive review. Nutrition research reviews. 2024; 1–12; https://doi.org/10.1017/S0954422424000234.
  22. Xie D.X., Xiong Y.L., Zeng C. et al. Association between low dietary zinc and hyperuricaemia in middle-aged and older males in China: a cross-sectional study. BMJ open. 2015; 5(10): e008637; https://doi.org/10.1136/bmjopen-2015-008637.
  23. Li L.Z., Zhou G.X., Li J. et al. Compounds containing trace element copper or zinc exhibit as potent hyperuricemia inhibitors via xanthine oxidase inactivation. Journal of trace elements in medicine and biology. 2018; 49: 72–78; https://doi.org/10.1016/j.jtemb.2018.04.019.
  24. Lei L., Su J., Chen J. et al. Abnormal Serum Copper and Zinc Levels in Patients with Psoriasis: A Meta-Analysis. Indian journal of dermatology. 2019; 64(3): 224–230; https://doi.org/10.4103/ijd.IJD_475_18.
  25. Gao Y., Li X., Liu T. et al. The Effect of Methotrexate on Serum Levels of Trace/Mineral Elements in Patients with Psoriatic Arthritis. Biological trace element research. 2021; 199(12): 4498–4503; https://doi.org/10.1007/s12011-021-02594-5.
  26. Корешкова, К.М., Хисматуллина, З.Р. Исследование сы-вороточных маркеров иммунного статуса и костного мета-болизма способствует раннему выявлению псориатичес-кого артрита у больных псориазом. Альманах клинической медицины. 2021; 49(8), 533–540. [Koreshkova K.M., Khismatullina Z.R. Evaluation of serum markers of the immune response and bone metabolism facilitates early detection of psoriatic arthritis in patients with psoriasis. Almanac of Clinical Medicine. 2021; 49(8): 533–540. (In Russ.)]; https://doi.org/10.18786/2072-0505-2021-49-044.
  27. Zeng C., Wang Y.L., Wei J. et al. Association between low serum magnesium concentration and hyperuricemia. Magnesium research. 2015; 28(2): 56–63; https://doi.org/10.1684/mrh.2015.0384.
  28. Pinto A.C., Nunes R.D., Carvalho W.V. et al. Systemic and local antiinflammatory effect of magnesium chloride in experimental arthritis. Advances in Rheumatology. 2024; 64: 6; https://doi.org/10.1186/s42358-023-00346-8.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2024