Intestinal monoamine oxidase: localization, functions, role in pathology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Monoamine oxidase is an enzyme whose functions and contribution to pathology have been so well studied in the brain, but remains unjustifiably forgotten in other organs and tissues, despite the fact that it is far from organ-specific and even has its maximum activity in the periphery rather than in the CNS. Data on the activity of monoamine oxidase in the intestine are isolated and fragmentary. Publications of individual clinical cases with positive effects in the treatment of chronic inflammatory bowel diseases with monoamine oxidase inhibitors served as a starting point for the initiation of fundamental research on cellular and animal models. Changes in the regulation and expression of the enzyme were found in some oncological diseases of the gastrointestinal tract, including gastric cancer and colorectal cancer. This review concentrates on key works showing the complexity of localization and partial certainty of the functions of monoamine oxidase in the intestine, the features of changes in enzyme activity in ontogenesis and participation in the development of pathological conditions. The possibilities of using monoamine oxidase as a diagnostic marker or pharmacological target for the therapy of intestinal diseases are considered.

Full Text

Restricted Access

About the authors

P. K. Vinel

South Ural State Medical University

Author for correspondence.
Email: vinelpolina@icloud.com
ORCID iD: 0000-0002-3745-3690

Post-graduate Student, Department of Biochemistry named after R.I. Lifshitz

Russian Federation, 64 Vorovskogo st., Chelyabinsk, 454092

A. I. Sinitskii

South Ural State Medical University

Email: sinitskiyai@yandex.ru
ORCID iD: 0000-0001-5687-3976

Dr.Sc. (Med.), Head of the Department of Biochemistry named after R.I. Lifshitz

Russian Federation, 64 Vorovskogo st., Chelyabinsk, 454092

E. L. Kurenkov

South Ural State Medical University

Email: kurenkovel@chelsma.ru
ORCID iD: 0000-0002-3544-1143

Dr.Sc. (Med.), Head of the Department of Anatomy and Operative Surgery

Russian Federation, 64 Vorovskogo st., Chelyabinsk, 454092

References

  1. Levine R., Sjoerdsma A. Monoamine Oxidase Activity in Human Tissues and Intestinal Biopsy Specimens. Experimental Biology and Medicine. 1962; 109(1): 225–7. doi: 10.3181/00379727-109-27160.
  2. Lewinsohn R., Glover V., Sandler M. Development of benzylamine oxidase and monoamine oxidase A and B in man. Biochemical pharmacology. 1980; 29(9): 1221–1230. doi: 10.1016/0006-2952(80)90278-6.
  3. Hickey J., Becker W., Nevins S. et al. Organization of the human intestine at single-cell resolution. Nature. 2023; 619(7970): 572584. doi: 10.1038/s41586-023-05915-x.
  4. Wegler C., Wiśniewski J., Robertsen I. et al. Drug Disposition Protein Quantification in Matched Human Jejunum and Liver From Donors With Obesity. Clinical Pharmacology & Therapeutics. 2022;111(5):1142–54. doi: 10.1002/cpt.2558.
  5. Hasan F., McCrodden J., Kennedy N. et al. The involvement of intestinal monoamine oxidase in the transport and metabolism of tyramine. Journal of neural transmission. Supplementum. 1988; 26: 1–9.
  6. Rodríguez M., Saura J., Billett E., et al. Cellular localization of monoamine oxidase A and B in human tissues outside of the central nervous system. Cell and Tissue Research. 2001; 304(2): 215–220. doi: 10.1007/s004410100361.
  7. Saura J., Nadal E., van den Berg B. et al. Localization of monoamine oxidases in human peripheral tissues. Life sciences. 1996; 59(16): 1341–1349. doi: 10.1016/0024-3205(96)00459-6.
  8. Liu C., Zhang X., Zhou L. et al. Rasagiline, an inhibitor of MAO‐B, decreases colonic motility through elevating colonic dopamine content. Neurogastroenterology & Motility. 2018; 30(11). doi: 10.1111/nmo.13390.
  9. Spiro H., Filipe M., Stewart J. et al. Functional histochemistry of the small bowel mucosa in malabsorptive syndromes. Gut. 1964; 5(2): 45. doi: 10.1136/gut.5.2.145.
  10. Riecken E.O., Pearse A.G. Histochemical study on the Paneth cell in the rat. Gut. 1966; 7(1): 86. doi: 10.1136/gut.7.1.86.
  11. Gershon M., Sherman D., Pintar J. Type‐specific localization of monoamine oxidase in the enteric nervous system: Relationship to 5‐hydroxytryptamine, neuropeptides, and sympathetic nerves. Journal of comparative neurology. 1990; 301(2): 191–213. doi: 10.1002/cne.903010205.
  12. Tra M. Novel monoamine oxidase B inhibitor downregulation of lipopolysaccharide-induced pro-inflammatory cytokines. University of British Columbia. 2015. doi: 10.14288/1.0166397.
  13. Furness J., Costa M. Monoamine oxidase histochemistry of enteric neurones in the guinea-pig. Histochemie. 1971; 28(4): 324–336. doi: 10.1007/bf00702638.
  14. Lewinsohn R. Benzylamine oxidase: an enzyme in search of a function. University of London, 1980.
  15. Cho H., Kim S., Sim J. et al. Redefining differential roles of MAO-A in dopamine degradation and MAO-B in tonic GABA synthesis. Experimental & Molecular Medicine. 2021; 53(7): 1148–58. doi: 10.1038/s12276-021-00646-3.
  16. Eisenhofer G. Substantial production of dopamine in the human gastrointestinal tract. The Journal of Clinical Endocrinology & Metabolism. 1997;82(11):3864-3871. doi: 10.1210/jc.82.11.3864.
  17. Anlauf M., Schäfer M., Eiden L. et al. Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. Journal of Comparative Neurology. 2003; 459(1): 90–111. doi: 10.1002/cne.10599.
  18. Xue R., Zhang H., Pan J. et al. Peripheral dopamine controlled by gut microbes inhibits invariant natural killer T cell-mediated hepatitis. Frontiers in immunology. 2018; 9: 413950. doi: 10.3389/fimmu.2018.02398.
  19. Tian Y., Chen X., Luo D. et al. Alteration of dopaminergic markers in gastrointestinal tract of different rodent models of Parkinson's disease. Neuroscience. 2008; 153(3): 634-644. doi: 10.1016/j.neuroscience.2008.02.033.
  20. Graves S., Xie Z., Stout K. et al. Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nature Neuroscience. 2019; 16; 23(1): 15–20. doi: 10.1038/s41593-019-0556-3.
  21. Vieira-Coelho M., Teixeira V., Guimaraes J. et al. Caco-2 cells in culture synthesize and degrade dopamine and 5-hydroxytryptamine: a comparison with rat jejunal epithelial cells. Life Sciences. 1999; 64(1): 69–68. doi: 10.1016/s0024-3205(98)00535-9.
  22. Lubomski M., Davis R.L., Sue C.M. Gastrointestinal dysfunction in Parkinson’s disease. Journal of Neurology. 2020; 267(5): 1377–1388. doi: 10.1038/s41593-019-0556-3.
  23. Tolosa E., Stern M. Efficacy, safety and tolerability of rasagiline as adjunctive therapy in elderly patients with Parkinson’s disease. European Journal of Neurology. 2012; 19(2): 258–264. doi: 10.1111/j.1468-1331.2011.03484.x.
  24. Sanidad K., Rager S., Carrow H. et al. Gut bacteria–derived serotonin promotes immune tolerance in early life. Science Immunology. 2024; 9(93). doi: 10.1126/sciimmunol.adj4775.
  25. Mondanelli G., Volpi C. The double life of serotonin metabolites: in the mood for joining neuronal and immune systems. Current Opinion in Immunology. 2021; 70: 1–6. doi: 10.1016/j.coi.2020.11.008.
  26. Gerber G., Deroo J., Mazanowska A. Metabolism of 5-hydroxytryptophan in isolated perfused intestine from normal and x-irradiated rat. Archives Internationales de Physiologie et de Biochimie. 1972; 80(4): 733–739. doi: 10.3109/13813457209075263.
  27. Schwörer H., Racké K., Kilbinger H. Spontaneous release of endogenous 5-hydroxytryptamine and 5-hydroxyindoleacetic acid from the isolated vascularly perfused ileum of the guinea-pig. Neuroscience. 1987; 21(1): 297–303. doi: 10.1016/0306-4522(87)90340-x.
  28. Rothman T., Ross L., Gershon M. Separately developing axonal uptake of 5-hydroxytryptamine and norepinephrine in the fetal ileum of the rabbit. Brain Research. 1976; 115 (3): 437–456. doi: 10.1016/0006-8993(76)90360-7.
  29. Wang Z., Chen K., Ying Q. et al. Monoamine oxidase A regulates neural differentiation of murine embryonic stem cells. Journal of neural transmission. 2011; 118: 997–1001. doi: 10.1007/s00702-011-0655-0.
  30. Natale G., Ryskalin L., Busceti C. The nature of catecholamine-containing neurons in the enteric nervous system in relationship with organogenesis, normal human anatomy and neurodegeneration. Archives Italiennes de Biologie. 2018; (3): 118–30. doi: 10.12871/00039829201733.
  31. Masliukov P., Emanuilov A., Budnik A. Sympathetic innervation of the development, maturity, and aging of the gastrointestinal tract. The Anatomical Record. 2022; 306(9): 2249–2263. doi: 10.1002/ar.25015.
  32. Goridis C., Neff N. Monoamine oxidase in sympathetic nerves: a transmitter specific enzyme type. British Journal of Pharmacology. 1971; 43(4): 814–8. doi: 10.1111/j.1476-5381.1971.tb07217.x.
  33. Sun M., Wan Y., Shi M. et al. Neural innervation in adipose tissue, gut, pancreas, and liver. Life Metabolism. 2023; 2(4). doi: 10.1093/lifemeta/load022.
  34. Gwilt K. Trace Aminergic Regulation of Gastrointestinal Inflammation: A Novel Therapeutic Strategy for Ulcerative Colitis. Northeastern University, 2019. doi: 10.17760/d20317947.
  35. Karković M., Torić J., Barbarić M. et al. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules. 2019; 24(10): 2001. doi: 10.3390/molecules24102001.
  36. Anderson M., Hasan F., McCrodden J. Monoamine oxidase inhibitors and the cheese effect. Neurochemical research. 1993; 18: 1145–1149. doi: 10.1007/BF00978365.
  37. Данилов Д., Бровко М. Эволюция представлений о риске развития тираминового синдрома при терапии необратимыми неселективными ингибиторами моноаминоксидазы (к 70-летию начала использования этой группы антидепрессантов). Неврология, нейропсихиатрия, психосоматика. [Danilov D., Brovko M. Evolution of ideas about the risk of tyramine syndrome developing during therapy with irreversible non-selective monoamine oxidase inhibitors (to the 70th anniversary of the first use of this group of antidepressants). Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2022; 14(5): 4–12. (In Russ.)]. doi: 10.14412/2074-2711-2022-5-4-12.
  38. Gillman P. A reassessment of the safety profile of monoamine oxidase inhibitors: elucidating tired old tyramine myths. Journal of Neural Transmission. 2018; 125(11): 1707–1717. doi: 10.1007/s00702-018-1932-y.
  39. Obata Y., Kubota-Sakashita M., Kasahara T. et al. Phenethylamine is a substrate of monoamine oxidase B in the paraventricular thalamic nucleus. Scientific Reports. 2022; 12(1): 17. doi: 10.1038/s41598-021-03885-6.
  40. Bhattarai Y., Williams B., Battaglioli E. et al. Gut Microbiota-Produced Tryptamine Activates an Epithelial G-Protein-Coupled Receptor to Increase Colonic Secretion. Cell Host & Microbe. 2018; 23(6): 775–785.e5. doi: 10.1016/j.chom.2018.05.004.
  41. Jones R., Mercante J., Neish A. Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications. Curr Med Chem. 2012; 19(10): 1519–29. doi: 10.2174/092986712799828283.
  42. De Marchi U., Mancon M., Battaglia V. et al. Influence of reactive oxygen species production by monoamine oxidase activity on aluminum-induced mitochondrial permeability transition. Cellular and Molecular Life Sciences CMLS. 2004; 61: 2664–2671. doi: 10.1007/s00018-004-4236-3.
  43. Yi H., Akao Y., Maruyama W. et al. Type A monoamine oxidase is the target of an endogenous dopaminergic neurotoxin, N‐methyl (R) salsolinol, leading to apoptosis in SH‐SY5Y cells. Journal of neurochemistry. 2006; 96(2): 541–549. doi: 10.1111/j.1471-4159.2005.03573.x.
  44. Villageliú D., Borts D., Lyte M. Production of the neurotoxin salsolinol by a gut-associated bacterium and its modulation by alcohol. Frontiers in Microbiology. 2018; 9. doi: 10.3389/fmicb.2018.03092.
  45. Ou X., Chen K., Shih J. Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proceedings of the National Academy of Sciences. 2006; 103(29): 10923–10928. doi: 10.1073/pnas.0601515103.
  46. Ye D., Xu H., Xia H. et al. Targeting SERT promotes tryptophan metabolism: mechanisms and implications in colon cancer treatment. Journal of Experimental & Clinical Cancer Research. 2021; 40(1). doi: 10.1186/s13046-021-01971-1.
  47. Yang Y., Chien M., Lai T. et al. Monoamine oxidase B expression correlates with a poor prognosis in colorectal cancer patients and is significantly associated with epithelial-to-mesenchymal transition-related gene signatures. International journal of molecular sciences. 2020; 21(8): 2813. doi: 10.3390/ijms21082813.
  48. Mikula M., Rubel T., Karczmarski J. et al. Integrating proteomic and transcriptomic high-throughput surveys for search of new biomarkers of colon tumors. Functional & integrative genomics. 2011; 11: 215–224. doi: 10.1007/s10142-010-0200-5.
  49. Sánchez-Rodríguez R., Munari F., Angioni R. et al. Targeting monoamine oxidase to dampen NLRP3 inflammasome activation in inflammation. Cellular & molecular immunology. 2021; 18(5): 311–1313. doi: 10.1038/s41423-020-0441-8.
  50. Ostadkarampour M., Putnins E. Monoamine Oxidase Inhibitors: A Review of Their Anti-Inflammatory Therapeutic Potential and Mechanisms of Action. Frontiers in Pharmacology. 2021; 12. doi: 10.3389/fphar.2021.676239.
  51. Pretorius L., Smith C. The trace aminergic system: a gender-sensitive therapeutic target for IBS? Journal of Biomedical Science. 2020; 27(1): 95. doi: 10.1186/s12929-020-00688-1.
  52. Santoru M., Piras C., Murgia A. et al. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Scientific reports. 2017; 7(1): 9523. doi: 10.1038/s41598-017-10034-5.
  53. Gwilt K. Trace Aminergic Regulation of Gastrointestinal Inflammation: A Novel Therapeutic Strategy for Ulcerative Colitis. Northeastern University. 2019. doi: 10.17760/d20317947.
  54. Акопян А., Арутюнян М., Агавелян А. Роль моноаминоксидазы в патологии толстой кишки. Вопросы медицинской химии. 1994; 40(6): 54–57. [Akopian A., Arutiunian M., Agavelian A. The role of monoamine oxidase in large intestine pathology. Voprosy meditsinskoi khimii. 1994; 40(6): 54–57. (In Russ.)].
  55. Винель П., Царева В., Бабошко П. и др. Моноаминоксидаза тромбоцитов и аденозинтрифосфатазы эритроцитов как биомаркеры некротизирующего колита. Детская хирургия. 2024; 28(2): 124–132. [Vinel P., Tsareva V., Baboshko P. et al. Platelet monoamine oxidase and erythrocyte adenosine triphosphatase as biomarkers of necrotizing enterocolitis. Russian Journal of Pediatric Surgery. 2024; 28(2): 124–132. (In Russ.)]. doi: 10.17816/ps670.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russkiy Vrach Publishing House