Optimization of the conditions of ultrasonic extraction of polyphenolic compounds from the inflorescences of Koenigia weyrichii (F. Schmidt) T.M. Schust. Et Reveal
- Authors: Korovkina A.V.1, Koigerova A.A.1, Tsvetov N.S.1, Mizina P.G.2
-
Affiliations:
- Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”
- All-Russian Scientific Research Institute of Medicinal and Aromatic Plants
- Issue: Vol 28, No 1 (2025)
- Pages: 30-40
- Section: Pharmaceutical chemistry
- URL: https://journals.eco-vector.com/1560-9596/article/view/646634
- DOI: https://doi.org/10.29296/25877313-2025-01-04
- ID: 646634
Cite item
Abstract
Introduction. Inflorescences of Koenigia weyrichii (F. Schmidt) T.M. Schust. et Reveal contains a large amount of flavonoids. However, at present, the most optimal conditions for their extraction by water-ethanol mixtures have not been obtained, and the effect of ultrasound on the extraction process has not been fully studied.
The aim of the study was to optimize the conditions of ultrasonic water-ethanol extraction of secondary metabolites from the inflorescences of K. weyrichii.
Material and methods. Optimal extraction conditions have been established using the Box-Behnken algorithm. The total content of polyphenols was determined using the Folin-Ciocalteu method, and flavonoids were determined using a complexation reaction with aluminum chloride. The total antioxidant activity was assessed using the phosphomolybdate method. The content of polyphenolic acids was determined by HPLC. The ability of the extract obtained under optimal conditions to inhibit free radicals was determined by DPPH and ABTS methods.
Results. The highest yield of the target substances is achieved in 60 minutes of extraction in 50% aqueous ethanol at a temperature of 50 ° C, and mixing plant material with a particle size of 0.1 mm with an solvent in a ratio of 1:10 (mass to volume. It has been shown that ultrasound exposure reduces the yield of target substances.
Conclusions. The results of the work are the scientific basis for the development of methods of phytochemical analysis and technologies for the production of pharmaceuticals based on the studied plant.
Full Text

About the authors
A. V. Korovkina
Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”
Author for correspondence.
Email: a.korovkina@ksc.ru
ORCID iD: 0000-0002-4097-6521
Research Scientist, Laboratory of Medical and Biological Technologies
Russian Federation, Fersmana str. 14, Apatity, 184209A. A. Koigerova
Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”
Email: a.koygerova@ksc.ru
ORCID iD: 0000-0002-8843-0122
Research Scientist, Laboratory of Medical and Biological Technologies
Russian Federation, Fersmana str. 14, Apatity, 184209N. S. Tsvetov
Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”
Email: n.tsvetov@ksc.ru
ORCID iD: 0000-0003-1356-2259
Ph.D. (Chem.), Head of the Laboratory of Medical and Biological Technologies, Scientific Center for Medical and Biological Research of Human Adaptation in the Arctic
Russian Federation, Fersmana str. 14, Apatity, 184209P. G. Mizina
All-Russian Scientific Research Institute of Medicinal and Aromatic Plants
Email: mizina-pg@yandex.ru
ORCID iD: 0000-0001-6510-9603
Dr.Sc. (Pharm.), Professor, Advisor to the Director, Honored Scientist of the Russian Federation
Russian Federation, Grin str. 7, Moscow, 117216References
- Korovkina A V., Zhirov VK. Environmental factors affecting flavonoid accumulation in plants Poligonum weyrichii growing in Murmansk region. Regul Mech Biosyst. 2019; 10(4): 553–559. doi: 10.15421/021981.
- Головкин Б.Н., Руденская Р.Н., Трофимова И.А., Шретер А.И. Биологически активные вещества растительного происхождения. В 3-х томах. Т. 1. под ред. Семихов В.Ф., М.: Наука; 2001. 350 p. [Golovkin B.N., Rudenskaya R.N., Trofimova I.A., Shreter A.I. Biologicheski aktivny`e veshhestva rastitel`nogo proisxozhdeniya. V 3-x tomax. T. 1. pod red. Semixov V.F., M.: Nauka; 2001. 350 p. (In Russ.)].
- Беленовская Л.М., Лесиовская Е.Е. Растительные ресурсы России. Т. 1. СПб; 2008. 421 p. [Belenovskaya L.M., Lesiovskaya E.E. Rastitel`ny`e resursy` Rossii. T. 1. SPb; 2008. 421 p. (In Russ.)].
- Korovkina A., Zhirov V., Tsvetov N., Petrashova D. Herbaceous plants growing in Arctic zones as potential perspective sources of valuable flavonoids. IOP Conf Ser Earth Environ Sci. 2020; 613(1): 012058. doi: 10.1088/1755-1315/613/1/012058.
- Коровкина А.В., Цветов Н.С., Паукшта О.И. и др. Определение содержания полифенольных компонентов, антиоксидантной и антирадикальной аетивности этанольных экстрактов растения Koenigia weyrichii, произрастающего на Кольском полуострове. Химия растительного сырья. 2021; (3): 275–282. [Korovkina A.V., Tsvetov N.S., Paukshta O.I. i dr. Determination of the content of polyphenol components, antioxidant and antiradical activity of ethanol extracts of the plant Koenigia weyrichii growing on the Kola peninsula. Chemistry of plant raw material. 2021; (3): 275–282. (In Russ.)].
- Wang L., Weller C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol. 2006.17(6):300–12. doi: 10.1016/j.tifs.2005.12.004.
- NN Azwanida. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med Aromat Plants. 2015; 4(03): 3–8. doi: 10.4172/2167-0412.1000196.
- Panzella L., Moccia F., Nasti R. et al. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front Nutr. 2020; 7(May): 1–27. doi: 10.3389/fnut.2020.00060.
- Elapov A.A., Kuznetsov N.N., Marakhova A.I. The Use of Ultrasound in the Extraction of Biologically Active Compounds from Plant Raw Materials, Used or promising for Use in Medicine (Review). Drug Dev Regist. 2021; 10(4): 96–116. doi: 10.33380/2305-2066-2021-10-4-96-116.
- Анисимов П.Н. Об использовании методики планирования эксперимента в соответствие с трехуровневыми планами Бокса–Бенкена. Вестник магистратуры. 2017; 65(2): 32–36. [Anisimov P.N. Ob ispol`zovanii metodiki planirovaniya e`ksperimenta v sootvetstvie s trexurovnevy`mi planami Boksa–Benkena. Vestnik magistratury`. 2017; 65(2): 32–36. (In Russ.)].
- Ferreira S.L.C., Bruns R.E., Ferreira H.S. et al. Box-Behnken design: An alternative for the optimization of analytical methods. Anal Chim Acta. 2007; 597(2): 179–186.
- Zhang X., Su J., Chu X., Wang X. A Green Method of Extracting and Recovering Flavonoids from Acanthopanax senticosus Using Deep Eutectic Solvents. Molecules. 2022; 27(3):.923. doi: 10.3390/molecules27030923.
- Khezeli T., Daneshfar A., Sahraei R. A green ultra-sonic-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil. Talanta. 2016; 150: 577–85. doi: 10.1016/j.talanta.2015.12.077.
- Gao Y., Wang S., Dang S. et al. Optimized ultrasound-assisted extraction of total polyphenols from Empetrum nigrum and its bioactivities. J Chromatogr B Anal Technol Biomed Life Sci. 2021; 1173(January): 122699. doi: 10.1016/j.jchromb.2021.122699.
- Fliniaux O., Corbin C., Ramsay A. et al. Microwave-assisted extraction of herbacetin diglucoside from flax (Linum usitatissimum L.) seed cakes and its quantification using an RP-HPLC-UV system. Molecules. 2014.19(3):3025–37.
- Tsvetov N., Sereda L., Korovkina A. et al. Ultrasound-assisted extraction of phytochemicals from Empetrum hermafroditum Hager. using acid-based deep eutectic solvent: kinetics and optimization. Biomass Convers Biorefinery. 2022; 12(S1): 145–156. doi: 10.1007/s13399-022-02299-2.
- Sereda L.N., Tsvetov N.S. Optimization of the Method of Ultrasonic Extraction of Biologically Active Compounds With an Alcohol-Water Mixture From the Fruits of Vaccinium Vitis-Idaea L., Growing on the Kola Peninsula. Khimiya Rastit Syr’ya. 2024; 1(1): 292–300.
- Cavdarova M., Makris D.P. Extraction kinetics of phenolics from carob (Ceratonia siliqua L.) kibbles using environmentally benign solvents. Waste and Biomass Valorization. 2014; 5(5): 773–779.
- Pękal A., Pyrzynska K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal Methods. 2014; 7(9): 1776–82.
- Prieto P., Pineda M., Aguilar M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal Biochem. 1999; 269(2): 337–341. doi: 10.1006/abio.1999.4019.
- Koigerova A., Gosteva A., Samarov A., Tsvetov N. Deep Eutectic Solvents Based on Carboxylic Acids and Glycerol or Propylene Glycol as Green Media for Extraction of Bioactive Substances from Chamaenerion angustifolium (L.) Scop. Molecules. 2023; 28(19): 6978. doi: 10.3390/molecules28196978.
- Kedare S.B., Singh R.P. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol. 2011; 48(4): 412–422.
- Re R., Pellegrini N., Proteggente A. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999; 26(9–10): 1231–7. doi: 10.1016/S0891-5849(98)00315-3.
Supplementary files
