Evaluation of biocompatibility and adhesive properties of scaffolds based on inorganic bone matrix

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. The use of cellular engineering structures, including cell cultures and composite biomaterials, ensures maximum efficiency of bone defect repair, and the development of techniques and testing of carriers for osteogenic cell transplantation remains an urgent task of modern science. The study carried out biological testing of scaffolds based on the inorganic bone matrix obtained by a previously developed and patented method at the Institute of Medicinal and Aromatic Plants using human fibroblasts in terms of cytotoxicity, efficiency of cell adhesion and proliferation.

The purpose of the study is to evaluate experimentally the biocompatibility and adhesive properties of SIBM samples using human cell cultures in vitro to create an implantation cellular engineering structures.

Material and methods. The object of the study is SIBM samples of the inorganic bone tissue of the compact substance of the diaphysis of the femur of a bull with a cell line of human dermal fibroblasts HdFb (d77). The biocompatibility and adhesive properties of SIBM with respect to the cell line of dermal fibroblasts, their effect on cell viability and proliferative activity were studied using phase contrast microscopy, scanning electron microscopy, and the classical spectral method using tetrazolium yellow salt (MTT method).

Results. The formation of contacts of the plasma membrane of dermal fibroblasts with the SIBM samples was studied within 240 hours of incubation. At the same time, there were no significant changes in cell morphology. They formed a confluent monolayer (with cells tightly adjacent to each other), adhered well and were distributed over the surface of the SIBM. SIBM samples had virtually no effect on the metabolic activity of HdFb cells. The data obtained indicate a minimal effect of the studied samples on cell viability and proliferation, the absence of toxicity to cells and good biocompatibility with dermal fibroblasts in vitro.

Conclusions. It has been experimentally proved that the studied SIBM samples obtained by the previously developed method at the Institute of Medicinal and Aromatic Plants have adhesive properties, lack of cytotoxicity with respect to human HdFb dermal fibroblasts and have little effect on their proliferation in vitro.

Full Text

Restricted Access

About the authors

Y. Y. Litvinov

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Author for correspondence.
Email: vilar.litvinov@mail.ru
ORCID iD: 0000-0003-2718-2038

Ph.D. (Biol.), Leading Research Scientist

Russian Federation, Grina str. 7, Moscow, 117216

D. S. Kabanov

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Email: vilar.litvinov@mail.ru
ORCID iD: 0000-0001-8263-3079

Ph.D. (Biol.), Leading Research Scientist

Russian Federation, Grina str. 7, Moscow, 117216

V. V. Krasnov

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Email: vilar.litvinov@mail.ru
ORCID iD: 0000-0002-7415-4817

Dr.Sc. (Biol.), Chief Research Scientist

Russian Federation, Grina str. 7, Moscow, 117216

References

  1. Lesnjak O.M., Sannikova O.Ju. Terapija narushenij metabolizma kostnoj tkani. Russkij medicinskij zhurnal. 2010;11:735.
  2. Kuznecova D.S., Timashev P.S., Bagratashvili V.N., Zagajnova E.V. Kostnye implantaty na osnove skaffoldov i kletochnyh sistem v tkanevoj inzhenerii (obzor). Sovremennye tehnologii v medicine. 2014;6(4):201–212.
  3. Deev R.V., Isaev A.A., Kochish A.Ju., Tihilov R.M. Puti razvitija kletochnyh tehnologij v kostnoj hirurgii. Travmatologija i ortopedija Rossii. 2008;1(47):65-74.
  4. Revokatova D.P., Zurina I.M., Gorkun A.A., Saburina I.M. Sovremennye podhody k sozdaniju vaskuljarizovannyh kostnyh biojekvivalentov. Patologicheskaja fiziologija i jeksperimental'naja terapija. 2022;66(3):151-165. doi: 10.25557/0031-2991.2022.03.151-165.
  5. Popov N.V., Kolsanov A.V., Volova L.T., Ponomareva Ju.V. Doklinicheskie issledovanija opytnyh obrazcov personificirovannyh kostnyh implantatov na kul'ture dermal'nyh fibroblastov cheloveka. Vestnik medicinskogo instituta «REAVIZ». 2017;5:40–49.
  6. Korel' A.V., Kuznecov S.B. Tkaneinzhenernye strategii dlja vosstanovlenija defektov kostnoj tkani. Sovremennoe sostojanie vopros. Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. 2019;4:228–234.
  7. Shhanicyn I.N., Ivanov A.N., Ul'janov V.Ju., Norkin I.A. Sovremennye koncepcii stimuljacii regeneracii kostnoj tkani s ispol'zovaniem biologicheski aktivnyh skaffoldov. Citologija. 2019;61(1):16–34. doi: 10.1134/S0041377119010061.
  8. Deev R.V., Drobyshev A.Ju., Bozo I.Ja., Galeckij D.V., Korolev V.O., Eremin I.I., Filonenko E.S., Kiselev S.L., Isaev A.A. Sozdanie i ocenka biologicheskogo dejstvija gen-aktivirovannogo osteoplasticheskogo materiala, nesushhego gen VEGF cheloveka. Kletochnaja transplantologija i tkanevaja inzhenerija. 2013;6(3):78–85.
  9. Egorohina M.N., Muhina P.A., Bronnikova I.I. Skaffoldy kak sistemy dostavki biologicheski aktivnyh i lekarstvennyh veshhestv. Kompleksnye problemy serdechno-sosudistyh zabolevanij. 2020;9(1):91-102. doi: 10.17802/2306-1278-2020-9-1-92-102.
  10. Sposob poluchenija kostnogo implantata na osnove steril'nogo kostnogo matriksa: patent na izobretenie № 2756246 Ros. Federacija: MPK51 A61F 2/02 (2006.01), SPK52 A61F 2/02 (2021.05) / Ju.Ju. Litvinov, V.A. Bykov, N.I. Sidel'nikov, I.V. Matvejchuk, V.V. Krasnov; zajavitel' i patentoobladatel' FGBNU VILAR. – № 2021106711; zajavl. 16.03.2021, opubl. 28.09.2021, Bjul. № 28.
  11. Piaton E., Fabre M., Goubin-Versini I., et al. Guidelines for May-Grunwald-Giemsa staining in haematology and non-gynaecological cytopathology: recommendations of the French Society of Clinical Cytology (SFCC) and of the French association for quality assurance in anatomic and cytologic pathology (AFAQAP). Cytopathology. 2016;27(5):359–368. doi: 10.1111/cyt.12323.
  12. Litvinov Y.Y., Matveychuk I.V., Rozanov V.V., Krasnov V.V. Optimization of Technologies for Manufacture of Demineralized Bone Implants for Drug Release. Biomedical Engineering. 2021;54(6):393–396. doi: 10.1007/s10527-021-10047-5.
  13. Novikov I.A., Subbot A.M., Fedorov A.A. i dr. Supravital'noe kontrastirovanie lantanoidami dlja vizualizacii struktury biologicheskih obrazcov na skanirujushhem jelektronnom mikroskope. Geny i Kletki. 2015.10(2):90–96.
  14. Chebotar' I.V., Novikov I.A., Subbot A.M., Majanskij N.A. Lantanoidnoe kontrastirovanie kak uskorennaja tehnologija probopodgotovki mikrobiologicheskih preparatov dlja skanirujushhej jelektronnoj mikroskopii. Sovremennye tehnologii v medicine. 2017;9(3):23–30. doi: 10.17691/stm2017.9.3.03.
  15. Novikov I., Subbot A., Turenok A., Mayanskiy N., Chebotar I. A rapid method of whole cell sample preparation for scanning electron microscopy using neodymium chloride. Micron. 2019;124:102687. doi: 10.1016/j.micron.2019.102687.
  16. Kabanov D.S., Kitaeva M.P., Fedotcheva T.A. Yellow tetrazole for cytotoxic assay of plant biologically active substances. “90 years – from plant to drug: Achievements and prospects. 2021:607–613. doi: 10.52101/9785870191003_2021_607.
  17. Perez M.G., Fourcade L., Mateescu M.A., Paquin J. Neutral red versus MTT assay of cell viability in the presence of copper compounds. Analytical Biochemistry. 2017.535.43–46. doi: 10.1016/j.ab.2017.07.027.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Сylindrical shape SIBM sample with micro holes, magnification ×10

Download (267KB)
3. Fig. 2. Human dermal fibroblast cell culture HdFb. Coloring by Romanovsky-May Grunwald-Gimse, magnification ×200

Download (860KB)
4. Fig. 3. Morphology, proliferation and formation of HdFb cell contacts with the surface of SIBM samples during incubation: А – 24 h, B – 96 h, C, D – 120 h, E – 216 h, F – 240 h; magnification: A, B, C, D – ×20, E, F – ×8

Download (299KB)
5. Fig. 4. Classical spindle-shaped morphology of HdFb cells adhered to the surfaces of the culture plate and SIBM samples during incubation within 240 h; magnification А – ×450, B – ×1500

Download (475KB)
6. Fig. 5. The effect of the sample material on cell HdFb viability

Download (265KB)
7. Fig. 6. Dynamics of MTT-formazane production by control cells and cells incubated with SIBM samples within 196 h

Download (406KB)
8. Fig. 7. Production of MTT-formazane by cells, incubated with SIBM samples within 120 h after adding MTT: А – after 30 min, B – after 60 min; magnification ×20

Download (363KB)

Copyright (c) 2024 Russkiy Vrach Publishing House