Microfluidic devices adapted for stem cell cultivation (review)


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Currently, microfluidic devices of various nature and filling are of great importance for research in the field of molecular biology, neurobiology and clinical medicine. Modified microfluidic analytical systems created on the basis of specialized functional elements have unique properties aimed at studying cellular structures and the biochemical processes occurring in them. The functional advantages of microfluidic devices include, first of all, the creation of a constant concentration gradient of reacting components, the small size of these components, the minimum consumption of reagents, the possibility of setting up high-precision experiments. Microfluidic systems also allow monitoring the state of the cellular microenvironment by simulating physiological conditions. The most promising vectors of the development of microfluidic technologies regarding the cultivation of cell cultures of various origins are analyzed. The parameters of creating 3D cellular structures are considered. The possibilities of using various microfluidic systems with respect to cell lines of various origins are investigated in order to study their functioning and identify certain patterns of development. The review summarizes the methods of culturing cell cultures of other origin using microfluidic technologies, namely: experiments related to modeling liver, kidney, tooth pulp cells, muscle or cartilage tissue.

全文:

受限制的访问

作者简介

E. Teplyashina

Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation

Email: elenateplyashina@mail.ru
Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a course in medical, pharmaceutical and toxicological chemistry

A. Kutyakov

Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation

Email: victor-koutjakov@yandex.ru
Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a course in medical, pharmaceutical and toxicological chemistry

L. Shadrina

Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation

Email: shaliu@mail.ru
Assistant, Department of Biological Chemistry with a course in medical, pharmaceutical and toxicological chemistry

A. Salmina

Brain Research Department "Scientific Center of Neurology"

Email: allasalmina@mail.ru
Dr.Sc. (Med.), Professor

参考

  1. Bragheri F., Martinez Vazquez R., Osellame R. ThreeDimensional Microfabrication Using Two-Photon Polymerization. Microfluidics. 2020; 493-526. doi: 10.1016/b978-0-12-817827-0.00057-6.
  2. Спиров А.В. Подходы микрофлюидики в современной биологии развития. Онтогенез. 2018; 49(3): 165-180
  3. Gale B.K., A.R. Jafek, Lambert C.J., Goenner B.L., Moghimifam H., Nze U.C. Kamarapu S.K. A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects. Inventions. 2018; 3(60).
  4. Hansen C.L., Skordalakes E., Berger J.M., Quake S.R. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl. Acad. Sci. USA.2002; 99: 16531-16536.
  5. Takayama S., Ostuni E., LeDuc P., Naruse K., Ingber D.E., Whitesides G.M. Subcellular positioning of small molecules. Nature. 2001; 411: 1016.
  6. Son J., Samuel R., Gale B.K., Carrell D.T., Hotaling J.M. Separation of sperm cells from samples containing high concentrations of white blood cells using a spiral channel. Bio-microfluidics. 2017; 11; 054106.
  7. Jafek A.R., Harbertson, S., Brady H.; Samuel R., Gale B.K. Instrumentation for xPCR Incorporating qPCR and HRMA. Anal. Chem. 2018; 90: 7190-7196.
  8. Xia Y., Whitesides G.M. Soft Lithography. Annu. Rev. Mater. Sci. 1998; 28: 153-184.
  9. Pfohl T., Mugele F., Seemann R., Herminghaus S. Trends in Microfluidics with Complex Fluids. Chem Phys Chem. 2003; 4(12): 1291-1298. doi: 10.1002/cphc.200300847.
  10. Halldorsson S., Gomez-Sjoberg R., Lucumi E., Fleming R. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 2015; 63: 218-231.
  11. Глушкова Е.Г., Максимова Е.С., Иванова Ю.А., Глушков В.С. Моделирование гемодинамических процессов в микроциркуляторном русле с помощью микрофлюидных устройств. Медицинская наука и образование Урала. 2020; 1: 140-144
  12. Bain G., Kitchens D., Yao M., Huettner J.E., Gottlieb D.I. Embryonic stem cells express neuronal properties in vitro. Dev Biol. 1995; 168: 342-357.
  13. Vina-Almunia J., Mas-Bargues C., Borras C. et al. Influence of Partial O(2) Pressure on the Adhesion, Proliferation, and Osteogenic Differentiation of Human Dental Pulp Stem Cells on beta-Tricalcium Phosphate Scaffold. Int. J. Oral Maxillo-fac. Implant. 2017; 32: 1251-1256.
  14. Chen C., Tang Q., Zhan Y., Yu M., Jing W., Tian W. Physiox-ia: A more effective approach for culturing human adipose-derived stem cells for cell transplantation. Stem Cell Res. Ther. 2018; 9: 148.
  15. Levi M., Hunt B.J. A critical appraisal of point-of-care coagulation testing in critically ill patients. J. Thromb. Haemost. 2015; 13: 1960-1967.
  16. Zhang C., Neelamegham S. Application of microfluidic devices in studies of thrombosis and hemostasis. Platelets. 2017; 28: 434-440.
  17. Cosson S., Lutolf M.P. Hydrogel microfluidics for the patterning of pluripotent stem cells. Sciecitific Report. 2014; 4(1): 4462.
  18. Li L., Tan D., Liu S., Jiao R., Yang X., Li F., Wu H., Huang W. Optimization of Factor Combinations for Stem Cell Differentiations on a Design-of-Experiment Microfluidic Chip. Anal. Chem. 2020; 92 (20): 14228-14235.
  19. Hidalgo L., Stephens P., Song B., Barrow D. Microfluidic Encapsulation Supports Stem Cell Viability, Proliferation, and Neuronal Differentiation. Tissue Engineering Part C: Methods. 2018; 24(3): doi: 10.1089/ten.TEC.2017.0368.
  20. Patel B.B., Sharifi F., Stroud D.P., Montazami R., Hashemi N.N., Sakaguchi D.S. 3D Microfibrous Scaffolds Selectively Promotes Proliferation and Glial Differentiation of Adult Neural Stem Cells: A Platform to Tune Cellular Behavior in Neural Tissue Engineering. Macromol Biosci. 2019; 19(2): e1800236. doi: 10.1002/mabi.201800236. Epub 2018 Nov 27.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2021
##common.cookie##