Microfluidic devices adapted for stem cell cultivation (review)
- 作者: Teplyashina E.A1, Kutyakov A.A1, Shadrina L.B1, Salmina A.B2
 - 
							隶属关系: 
							
- Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation
 - Brain Research Department "Scientific Center of Neurology"
 
 - 期: 卷 24, 编号 11 (2021)
 - 页面: 3-8
 - 栏目: Articles
 - URL: https://journals.eco-vector.com/1560-9596/article/view/112893
 - DOI: https://doi.org/10.29296/25877313-2021-11-01
 - ID: 112893
 
如何引用文章
详细
全文:
作者简介
E. Teplyashina
Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation
														Email: elenateplyashina@mail.ru
				                					                																			                								Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a course in medical, pharmaceutical and toxicological chemistry				                								 						
A. Kutyakov
Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation
														Email: victor-koutjakov@yandex.ru
				                					                																			                								Ph.D. (Biol.), Associate Professor, Department of Biological Chemistry with a course in medical, pharmaceutical and toxicological chemistry				                								 						
L. Shadrina
Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation
														Email: shaliu@mail.ru
				                					                																			                								Assistant, Department of Biological Chemistry with a course in medical, pharmaceutical and toxicological chemistry				                								 						
A. Salmina
Brain Research Department "Scientific Center of Neurology"
														Email: allasalmina@mail.ru
				                					                																			                								Dr.Sc. (Med.), Professor				                								 						
参考
- Bragheri F., Martinez Vazquez R., Osellame R. ThreeDimensional Microfabrication Using Two-Photon Polymerization. Microfluidics. 2020; 493-526. doi: 10.1016/b978-0-12-817827-0.00057-6.
 - Спиров А.В. Подходы микрофлюидики в современной биологии развития. Онтогенез. 2018; 49(3): 165-180
 - Gale B.K., A.R. Jafek, Lambert C.J., Goenner B.L., Moghimifam H., Nze U.C. Kamarapu S.K. A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects. Inventions. 2018; 3(60).
 - Hansen C.L., Skordalakes E., Berger J.M., Quake S.R. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl. Acad. Sci. USA.2002; 99: 16531-16536.
 - Takayama S., Ostuni E., LeDuc P., Naruse K., Ingber D.E., Whitesides G.M. Subcellular positioning of small molecules. Nature. 2001; 411: 1016.
 - Son J., Samuel R., Gale B.K., Carrell D.T., Hotaling J.M. Separation of sperm cells from samples containing high concentrations of white blood cells using a spiral channel. Bio-microfluidics. 2017; 11; 054106.
 - Jafek A.R., Harbertson, S., Brady H.; Samuel R., Gale B.K. Instrumentation for xPCR Incorporating qPCR and HRMA. Anal. Chem. 2018; 90: 7190-7196.
 - Xia Y., Whitesides G.M. Soft Lithography. Annu. Rev. Mater. Sci. 1998; 28: 153-184.
 - Pfohl T., Mugele F., Seemann R., Herminghaus S. Trends in Microfluidics with Complex Fluids. Chem Phys Chem. 2003; 4(12): 1291-1298. doi: 10.1002/cphc.200300847.
 - Halldorsson S., Gomez-Sjoberg R., Lucumi E., Fleming R. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 2015; 63: 218-231.
 - Глушкова Е.Г., Максимова Е.С., Иванова Ю.А., Глушков В.С. Моделирование гемодинамических процессов в микроциркуляторном русле с помощью микрофлюидных устройств. Медицинская наука и образование Урала. 2020; 1: 140-144
 - Bain G., Kitchens D., Yao M., Huettner J.E., Gottlieb D.I. Embryonic stem cells express neuronal properties in vitro. Dev Biol. 1995; 168: 342-357.
 - Vina-Almunia J., Mas-Bargues C., Borras C. et al. Influence of Partial O(2) Pressure on the Adhesion, Proliferation, and Osteogenic Differentiation of Human Dental Pulp Stem Cells on beta-Tricalcium Phosphate Scaffold. Int. J. Oral Maxillo-fac. Implant. 2017; 32: 1251-1256.
 - Chen C., Tang Q., Zhan Y., Yu M., Jing W., Tian W. Physiox-ia: A more effective approach for culturing human adipose-derived stem cells for cell transplantation. Stem Cell Res. Ther. 2018; 9: 148.
 - Levi M., Hunt B.J. A critical appraisal of point-of-care coagulation testing in critically ill patients. J. Thromb. Haemost. 2015; 13: 1960-1967.
 - Zhang C., Neelamegham S. Application of microfluidic devices in studies of thrombosis and hemostasis. Platelets. 2017; 28: 434-440.
 - Cosson S., Lutolf M.P. Hydrogel microfluidics for the patterning of pluripotent stem cells. Sciecitific Report. 2014; 4(1): 4462.
 - Li L., Tan D., Liu S., Jiao R., Yang X., Li F., Wu H., Huang W. Optimization of Factor Combinations for Stem Cell Differentiations on a Design-of-Experiment Microfluidic Chip. Anal. Chem. 2020; 92 (20): 14228-14235.
 - Hidalgo L., Stephens P., Song B., Barrow D. Microfluidic Encapsulation Supports Stem Cell Viability, Proliferation, and Neuronal Differentiation. Tissue Engineering Part C: Methods. 2018; 24(3): doi: 10.1089/ten.TEC.2017.0368.
 - Patel B.B., Sharifi F., Stroud D.P., Montazami R., Hashemi N.N., Sakaguchi D.S. 3D Microfibrous Scaffolds Selectively Promotes Proliferation and Glial Differentiation of Adult Neural Stem Cells: A Platform to Tune Cellular Behavior in Neural Tissue Engineering. Macromol Biosci. 2019; 19(2): e1800236. doi: 10.1002/mabi.201800236. Epub 2018 Nov 27.
 
补充文件
				
			
						
						
					