Inhalation of antibiotics in the treatment of bronchopulmonal infection

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

An analysis of the current treatment protocol for lower respiratory tract infection using inhaled antibiotics is presented. Information about the pathophysiology and features of pathogens of bronchopulmonary infection in patients suffering from cystic fibrosis, nosocomial pneumonia, chronic obstructive pulmonary disease, and bronchiectasis of various etiologies is considered. The advantages and applications of inhaled antibiotics in the treatment of this category of patients are discussed. It has been established that acute and chronic infectious diseases of the lower respiratory tract are often the cause of severe human diseases and one of the leading causes of infectious mortality worldwide. Early initiation of adequate antibiotic therapy, especially in patients with a tendency to develop chronic inflammation, improves disease prognosis. However, mortality and the resistance of pathogens in this category of patients remain high. Traditional oral or parenteral antibiotic therapy does not achieve bactericidal concentrations in the lungs. Increasing dosages and combining antibiotics increases the likelihood of toxicity, superinfection, and resistance and causes undesirable side effects. Inhalation of antibiotics allows the delivery of higher concentrations directly to the lesion, thereby affecting the causative agents of the infectious process effectively while minimizing potential systemic toxicity. The large surface area of the alveoli and the thin epithelial layer provide a favorable environment for the deposition of inhaled drugs. Acute and chronic gram-negative bronchial infection caused by certain types of opportunistic microorganisms causes chronic inflammation, which leads to airway remodeling, damage to local defense mechanisms, further persistence of respiratory pathogens, and the formation of antibiotic resistance. In these cases, the use of inhaled forms of antibiotics has significant advantages in terms of effectiveness, stabilizing lung function and reducing the frequency of hospitalization, which improves quality of life and the need for systemic antibiotic therapy, reduces the risk of side effects, and reduces the cost of treatment. The results of the work can be useful for both therapists and pulmonologists.

Full Text

Restricted Access

About the authors

Tatyana E. Gembitskaya

First Saint Petersburg State Medical University named after academician I.P. Pavlov

Email: mukoviscidoz_otd@mail.ru
ORCID iD: 0000-0002-2293-3739
SPIN-code: 1462-0415

Doctor of Medical Sciences, Рrofessor

Russian Federation, Saint Petersburg

Mikhail A. Kharitonov

Military Medical Academy of S.M. Kirov

Email: micjul11@yandex.ru
ORCID iD: 0000-0002-6521-7986
SPIN-code: 7678-2278

Doctor of Medical Sciences

Russian Federation, Saint Petersburg

Alexey G. Chermensky

First Saint Petersburg State Medical University named after academician I.P. Pavlov

Email: tchermenski@mail.ru
ORCID iD: 0000-0003-1487-4182
SPIN-code: 3778-2756

Candidate of Medical Sciences

Russian Federation, Saint Petersburg

Alexandr A. Chugunov

Military Medical Academy of S.M. Kirov

Email: alexandrchugun@yandex.ru
ORCID iD: 0000-0002-2532-6133
SPIN-code: 3839-7619

Adjunct

Russian Federation, Saint Petersburg

Viktor P. Kitsyshin

Military Medical Academy of S.M. Kirov

Email: kitsyshin@ya.ru
ORCID iD: 0000-0002-7797-5952
SPIN-code: 5733-0983

Doctor of Medical Sciences

Russian Federation, Saint Petersburg

Alice S. Zdybko

Military Medical Academy of S.M. Kirov

Author for correspondence.
Email: Aliizez@mail.ru
ORCID iD: 0000-0002-0589-7625
SPIN-code: 9281-3901

6th year student

Russian Federation, Saint Petersburg

References

  1. Xu J, Murphy SL, Kochanek KD, Bastian BA. Deaths: Final Data for 2013. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics System. 2016;64(2):1–119.
  2. Aiache IM. Aerosol therapy in France. J Aerosol Med. 1990;3(2):85–120. doi: 10.1089/jam.1990.3.85
  3. Spellberg B, Blaser M, Guidos RJ, et al. Combating antimicrobial resistance: policy recommendations to save lives. Clin Infect Dis. 2011;52(5):397–428. doi: 10.1093/cid/cir153
  4. Ambrose PG, Bhavnani SM, Ellis-Grosse EJ, Drusano GL. Pharmacokinetic-pharmacodynamic considerations in the design of hospital-acquired or ventilator-associated bacterial pneumonia studies: look before you leap! Clin Infect Dis. 2010;51(1):103–110. doi: 10.1086/653057
  5. Le J, Ashley ED, Neuhauser MM, et al. Consensus summary of aerosolized antimicrobial agents: application of guideline criteria. Pharmacotherapy. 2010;30(6):562–584. doi: 10.1592/phco.30.6.562
  6. Shaginyan IA, Chernukha MYu, Avetisyan LR, et al. Epidemiological Features of Chronic Lung Infection in Patients with Cystic Fibrosis. Epidemiology and Vaccinal Prevention. 2017;16(6):5–13. (In Russ.). doi: 10.31631/2073-3046-2017-16-6-5-13
  7. Kapranov NI. Pharmacotherapy of cystic fibrosis: inhaled antibiotics. Medical council. 2013;(11):62–69. (In Russ.).
  8. Chermensky AG, Gembitskaya ME. Use of inhaled tobramycin in patients with cystic fibrosis. Terapevticheskii arkhiv. 2010;82(8): 76–78. (In Russ.).
  9. Gibson RL, Emerson J, McNamara S, et al. Significant Microbiological Effect of Inhaled Tobramycin in Young Children with Cystic Fibrosis. Am J Respir Crit Care Med. 2003;167(6):841–849. doi: 10.1164/rccm.200208-855OC
  10. Treggiari MM, Retsch-Bogart G, Mayer-Hamblett N, et al. Comparative Efficacy and Safety of Four Randomized Regimens to Treat Early Pseudomonas aeruginosa Infection in Children with Cystic Fibrosis. Arch Pediatr Adolesc Med. 2011;165(9):847–856. doi: 10.1001/archpediatrics.2011.136
  11. Kondrateva EI, Loshkova EV, Chernuha MY, Shaginian IA. Seudomonas infection in childhood: current state of the problem. Pediatrics. Journal named after G.N. Speransky. 2016;95(4):187–197. (In Russ.).
  12. Ratjen F, Moeller A, McKinney ML, et al. Early study group. Eradication of early P. aeruginosa infection in children <7 years of age with cystic fibrosis: The early study. J Cyst Fibros. 2019;18(1): 78–85. doi: 10.1016/j.jcf.2018.04.002
  13. Orlov AV, Nikitin MI, Ignatiev MN, Khvat SV. Experience of the use of tobramycin for inhalation in children with cystic fibrosis. Pediatric Pharmacology. 2012;9(1):125–126. (In Russ.). doi: 10.15690/pf.v9i1.176
  14. Gorinova YuV, Simonova OI, Lazareva AV, et al. Experience of the sustainable use of inhalations of tobramycin solution in chronic pseudomonas aeruginosa infection in children with cystic fibrosis. Russian pediatric journal. 2015;18(3):50–53. (In Russ.).
  15. Pavlinova EB, Mingairova AG, Safonova TI, et al. Clinical Significance of Lung Microbiota and Experience of the Inhaled Antibacterial Therapy in Children of the Omsk Cystic Fibrosis Center (Сase Series). Pediatric Pharmacology. 2018;15(2):121–128. (In Russ.). doi: 10.15690/pf.v15i2.1868
  16. Golubtsova OI, Gorinova YuV, Krasnov MV, et al. Inhaled tobramycin for the treatment of chronic pseudomonas aeruginosa infection in children with cystic fibrosis in the Chuvash Republic. Prakticheskaya pul'monologiya. 2017;(3):40–45. (In Russ.).
  17. Shaginyan IA, Chernukha MY, Kapranov NI, et al. Consensus «Cystic Fibrosis: definition, diagnostic criteria, treatment» Section «Microbiology and Epidemiology of chronic respiratory infections in cystic fibrosis». Pediatrician (St. Petersburg). 2016;7(1):80–96. (In Russ.). doi: 10.17816/PED7180-96
  18. Maselli DJ, Amalakuhan B, Keyt H, Diaz AA. Suspecting non-cystic fibrosis bronchiectasis: What the busy primary care clinician needs to know. Int J Clin Pract. 2017;71(2):e12924. doi: 10.1111/ijcp.12924
  19. Rubin BK. Overview of cystic fibrosis and non-CF bronchiectasis. Semin Respir Crit Care Med. 2003;24(6):619–628. doi: 10.1055/s-2004-815658
  20. Tunney MM, Einarsson GG, Wei L, et al. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am J Respir Crit Care Med. 2013;187(10):1118–1126. doi: 10.1164/rccm.201210-1937OC
  21. King PT, Holdsworth SR, Freezer NJ, et al. Microbiologic follow-up study in adult bronchiectasis. Respir Med. 2007;101(8):1633–1638. doi: 10.1016/j.rmed.2007.03.009
  22. Bilton D, Henig N, Morrissey B, Gotfried M. Addition of inhaled tobramycin to ciprofloxacin for acute exacerbations of Pseudomonas aeruginosa infection in adult bronchiectasis. Chest. 2006;130(5): 1503–1510. doi: 10.1378/chest.130.5
  23. Avdeev SN, Karchevskaya NА. First experience of using nebulized tobramycin in patients with acute exacerbation of bronchiectasis. Pulmonologiya. 2011;(4):133–138. (In Russ.). doi: 10.18093/0869-0189-2011-0-4-133-138
  24. Pasteur MC, Bilton D, Hill AT, British Thoracic Society Bronchiectasis non-CF Guideline Group. British Thoracic Society guideline for non-CF bronchiectasis. Thorax. 2010;65(1):11–58. doi: 10.1136/thx.2010.136119
  25. Vendrell M, Muñoz G, de Gracia J. Evidence of inhaled tobramycin in non-cystic fibrosis bronchiectasis. Open Respir Med J. 2015;9: 30–36. doi: 10.2174/1874306401509010030
  26. Vendrell M, de Gracia J, Olveira C, et al. Diagnosis and treatment of bronchiectasis. Spanish Society of Pneumology and Thoracic Surgery. Archivos de bronconeumologia. 2008;44(11):629–640. (In Span.) doi: 10.1157/13128330
  27. Ioannidou E, Siempos II, Falagas ME. Administration of antimicrobials via the respiratory tract for the treatment of patients with nosocomial pneumonia: a meta-analysis. J Antimicrob Chemother. 2007;60(6):1216–1226. doi: 10.1093/jac/dkm385
  28. Melsen WG, Rovers MM, Groenwold RHH, et al. Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies. The Lancet. Infectious diseases. 2013;13(8):665–671. doi: 10.1016/S1473-3099(13)70081-1
  29. Zampieri FG, Nassar AP Jr, Gusmao-Flores D, et al. Nebulized antibiotics for ventilator-associated pneumonia: a systematic review and meta-analysis. Crit Care. 2015;19(1):150. doi: 10.1186/s13054-015-0868-y
  30. Rello J, Ollendorf DA, Oster G, et al. VAP Outcomes Scientific Advisory Group. Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest. 2002;122(6):2115–2121. doi: 10.1378/chest.122.6.2115
  31. Trouillet J-L, Chastre J, Vuagnat A, et al. Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am J Respir Crit Care Med. 1998;157(2):531–539. doi: 10.1164/ajrccm.157.2.9705064
  32. Hoffman LR, D'Argenio DA, MacCoss MJ, et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 2005;436: 1171–1175. doi: 10.1038/nature03912
  33. Adair C, Gorman S, Byers L, et al. Eradication of endotracheal tube biofilm by nebulised gentamicin. Intensive Care Med. 2002;28: 426–431. doi: 10.1007/s00134-002-1223-8
  34. Falagas ME, Siempos II, Bliziotis IA, Michalopoulos A. Administration of antibiotics via the respiratory tract for the prevention of ICU-acquired pneumonia: a meta-analysis of comparative trials. Crit Care. 2006;10:R123. doi: 10.1186/cc5032
  35. Lu Q, Luo R, Bodin L, et al. Nebulized Antibiotics Study Group. Efficacy of high-dose nebulized colistin in ventilator-associated pneumonia caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Anesthesiology. 2012;117(6): 1335–1347. doi: 10.1097/ALN.0b013e31827515de
  36. Kwa ALH, Loh CS, Low JGH, et al. Nebulized colistin in the treatment of pneumonia due to multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Clin Infect Dis. 2005;41(5):754–757. doi: 10.1086/432583
  37. Arnold HM, Sawyer AM, Kollef MH. Use of adjunctive aerosolized antimicrobial therapy in the treatment of Pseudomonas aeruginosa and Acinetobacter baumannii ventilator-associated pneumonia. Respir Care. 2012;57(8):1226–1233. doi: 10.4187/respcare.01556
  38. Niederman MS, Chastre J, Corkery K, et al. BAY41-6551 achieves bactericidal tracheal aspirate amikacin concentrations in mechanically ventilated patients with Gram-negative pneumonia. Intensive Care Med. 2012;38:263–271. doi: 10.1007/s00134-011-2420-0
  39. Tumbarello M, De Pascale G, Trecarichi EM, et al. Effect of aerosolized colistin as adjunctive treatment on the outcomes of microbiologically documented ventilator-associated pneumonia caused by colistin-only susceptible gram-negative bacteria. Chest. 2013;144(6):1768–1775. doi: 10.1378/chest.13-1018
  40. Korbila IP, Michalopoulos A, Rafailidis PI, et al. Inhaled colistin as adjunctive therapy to intravenous colistin for the treatment of microbiologically documented ventilator-associated pneumonia: a comparative cohort study. Clin Microbiol Infect. European Society of Clinical Microbiology and Infectious Diseases. 2010;16(8):1230–1236. doi: 10.1111/j.1469-0691.2009.03040.x
  41. Bogovic TZ, Tomasevic B, Budimir A, at al. Inhalation plus intravenous colistin versus intravenous colistin alone for treatment of ventilator associated pneumonia. Signa Vitae. 2014;9:29–33.
  42. Liu D, Zhang J, Liu H-X, et al. Intravenous combined with aerosolised polymyxin versus intravenous polymyxin alone in the treatment of pneumonia caused by multidrug-resistant pathogens: a systematic review and meta-analysis. Int J Antimicrob Agents. 2015;46(6):603–609. doi: 10.1016/j.ijantimicag.2015.09.01
  43. Linden PK, Paterson DL. Parenteral and inhaled colistin for treatment of ventilator-associated pneumonia. Clin Infect Dis. 2006;43(2):89–94. doi: 10.1086/504485
  44. Polovnikov SG, Kuzovlev AN, Ilyichev AN. An experience of administration of inhaled tobramycin in severe nosocomial pneumonia. Pulmonologiya. 2011;2(8):109–112. (In Russ.). doi: 10.18093/0869-0189-2011-0-2-109-112
  45. Petrova SI, Panyutina YaV, Peshekhonova YuV, et al. Ispol'zovanie ingalyatsionnogo tobramitsina u detei s khronicheskimi zabolevaniyami dykhatel'nykh putei i nositel'stvom sinegnoinoi infektsii. Messenger of Anesthesiology and Resuscitation. 2012;9(2):64–68. (In Russ.).
  46. Salukhov VV, Kryukov EV, Kharitonov MA, et al. Triple therapy in a single inhaler for chronic obstructive pulmonary disease: clinical studies and case report (real practice). Medical Council. 2021;(16): 174–184. (In Russ.). doi: 10.21518/2079-701X-2021-16-174-184
  47. Ivanov IM, Ivchenko EV, Yudin MA, et al. Application aspects of medications for inhalation at the prehospital stage of medical evacuation. Bulletin of the Russian Military Medical Academy. 2021;23(4):247–256. (In Russ.). doi: 10.17816/brmma58989
  48. Parfenov SA, Borovkov EYu, Shagvaliev AG, et al. Modern Directions of Prophylaxis of Community-Acquired Pneumonia Among Soldiers Undergoing Military Service on Conscription. Antibiotics and Chemotherapy. 2018;63(1–2):38–43. (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Gembitskaya T.E., Kharitonov M.A., Chermensky A.G., Chugunov A.A., Kitsyshin V.P., Zdybko A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies