Modern prospects of targeted hypolipidemic therapy

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This article analyzes new approaches to reducing atherogenic lipoproteins using lipid-lowering drugs with innovative mechanisms of action. It examines the role of different groups of lipid-lowering drugs in the overall range of modern methods for correcting lipid metabolism disorders. The significance of statins as a foundational therapy in primary and secondary prevention of cardiovascular diseases with atherosclerotic origins is emphasized. The article presents research findings on a new “target” in lipid-lowering therapy, namely the proprotein convertase of subtilisin/kexin type 9 (PCSK9), and the use of a new class of drugs known as PCSK9 inhibitors, whose which have proven to be a powerful tool in reducing low-density lipoproteins. Moreover, advancements in this field have led to the development of molecules capable of genetically blocking the genes responsible for PCSK9 proprotein convertase synthesis, offering an exceptional effectiveness with dosing intervals of once every six months. The article also explores potential new drugs such as bempedoic acid, which lowers low-density lipoprotein levels, and cholesterol ester transporter protein inhibitors, which raise high-density lipoproteins levels. Additionally, it delves into more extensively studied drug groups like оmega-3 polyunsaturated fatty acids and fibrates. Consequently, lipid-lowering therapy provides an additional risk reduction for cardiovascular complications. The article highlights efforts to personalize cholesterol-lowering therapy, including improved risk stratification tools, the utilization of a genetic risk scale, and the integration of studies on lipid-lowering drugs with innovative mechanisms of action. Statins remain the first-line drugs for lipid level reduction; however, the emergence of alternative methods of treatment, provided their positive effect on the cardiovascular prognosis, enables an individualized approach based on the specific lipid profile of each patient. Implementing such a strategy requires training for both healthcare professionals and patients, as well as specialized programs.

Full Text

Restricted Access

About the authors

Alexey N. Kuchmin

Kirov Military Medical Academy

Email: kuchmin.63@mail.ru
ORCID iD: 0000-0003-2888-9625
SPIN-code: 7787-1364

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Mikhail B. Nagorny

Kirov Military Medical Academy

Author for correspondence.
Email: ilikedm@mail.ru
ORCID iD: 0000-0002-5542-0948
SPIN-code: 1861-8100

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Anatoly M. Grachev

Kirov Military Medical Academy

Email: Agrachev.spb@gmail.com
ORCID iD: 0000-0003-4037-8932

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Elena V. Smirnova

Kirov Military Medical Academy

Email: elenavladimirovnasmirnova1948@gmail.com
ORCID iD: 0000-0001-5711-5800
SPIN-code: 4266-7553

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

References

  1. Cherkashin DV. Heart failure with preserved ejection fraction: features of diagnosis and treatment. Therapist’s Bulletin. 2022;(2):1–14. (In Russ.).
  2. Kryukov EV, Kuchmin AN, Umanskaya EP, et al. The main pathogenetic mechanisms of hypercoagulation in diabetes and the possibility of its drug correction. Bulletin of the Russian Military Medical Academy. 2021;23(2):165–174. (In Russ.). doi: 10.17816/brmma64995
  3. Tyrenko VV, Nikitin AE, Rozhkov DE, et al. Lipid metabolism parameters dynamics in patients who have not previously reached the target values of low-density lipoprotein cholesterol. Cardiology: News, Opinions, Training. 2022;10(1):29–33. (In Russ.). doi: 10.33029/2309-1908-2022-10-1-29-33
  4. Borén J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020;41(24):2313–2330. doi: 10.1093/eurheartj/ehz962
  5. Balling M, Nordestgaard BG, Langsted A, et al. Small dense low-density lipoprotein cholesterol predicts atherosclerotic cardiovascular disease in the Copenhagen General Population Study. J Am Coll Cardiol. 2020;75(22):2873–2875. doi: 10.1016/j.jacc.2020.03.072
  6. Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J. 2020;41(1):99–109. doi: 10.1093/eurheartj/ehz785
  7. Tokgözoğlu L, Libby P. The dawn of a new era of targeted lipid-lowering therapies. Eur Heart J. 2022;43(34):3198–3208. doi: 10.1093/eurheartj/ehab841
  8. Johannesen CDL, Mortensen MB, Langsted A, Nordestgaard BG. Apolipoprotein B and non-HDL cholesterol better reflect residual risk than LDL cholesterol in statin-treated patients. J Am Coll Cardiol. 2021;77(11):1439–1450. doi: 10.1016/j.jacc.2021.01.027
  9. Mach F, Baigent C, Catapano A, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2020;41(1): 111–188. doi: 10.1093/eurheartj/ehz455
  10. Ginsberg HN, Packard CJ, Chapman MJ, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021;42(47):4791–4806. doi: 10.1093/eurheartj/ehab551
  11. Angelantonio ED, Gao P, Pennells L, et al. Emerging Risk Factors Collaboration. Lipid-related markers and cardiovascular disease prediction. JAMA. 2012;307(23):2499–2506. doi: 10.1001/jama.2012.6571
  12. Ray KK, Ginsberg HN, Davidson MH, et al. Reductions in atherogenic lipids and major cardiovascular events. Circulation. 2016;134(24):1931–1943. doi: 10.1161/CIRCULATIONAHA.116.024604
  13. Lobo LM, Molinero G, Masson W, et al. Non-statin lipid-lowering therapy in coronary atherosclerosis regression: a meta-analysis and meta-regression. Eur Heart J. 2020;41(S2):ehaa946.2981. doi: 10.1093/ehjci/ehaa946.2981
  14. Mabuchi H, Haba T, Tatami R, et al. Effect of an inhibitor of 3-hydroxy-3-methyglutaryl coenzyme A reductase on serum lipoproteins and ubiquinone-10-levels in patients with familial hypercholesterolemia. 1981. N Engl J Med. 2004;5(3):51–55. doi: 10.1016/j.atherosclerosissup.2004.08.023
  15. Tan Y-D, Xiao P, Guda C. In-depth Mendelian randomization analysis of causal factors for coronary artery disease. Sci Rep. 2020;10(1):9208. doi: 10.1038/s41598-020-66027-4
  16. Furberg CD, Pitt B. Withdrawal of cerivastatin from the world market. Curr Controll Trials Cardiovasc Med. 2001;2(5):205–207. doi: 10.1186/cvm-2-5-205
  17. Bruckert E, Hayem G, Dejager S, et al. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients-the PRIMO study. Cardiovasc Drugs Ther. 2005;19(6): 403–414. doi: 10.1007/s10557-005-5686-z
  18. Hegele RA, Tsimikas S. Lipid-lowering agents. Circ Res. 2019;124(3):386–404. doi: 10.1161/CIRCRESAHA.118.313171
  19. Howard JP, Wood FA, Finegold JA, et al. Side effect patterns in a crossover trial of statin, placebo, and no treatment. J Am Coll Cardiol. 2021;78(12):1210–1222. doi: 10.1016/j.jacc.2021.07.022
  20. Seo W-W, Seo SI, Kim Y, et al. Impact of pitavastatin on new-onset diabetes mellitus compared to atorvastatin and rosuvastatin: a distributed network analysis of 10 real-world databases. Cardiovasc Diabetol. 2022;21(1):82. doi: 10.1186/s12933-022-01524-6
  21. Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017;35(3):222–229. doi: 10.1038/nbt.3802
  22. Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet. 2014;383(9911): 60–68. doi: 10.1016/S0140-6736(13)61914-5
  23. Dewey FE, Gusarova V, Dunbar RL, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med. 2017;377(3):211–221. doi: 10.1056/NEJMoa1612790
  24. Landmesser U, Poller W, Tsimikas S, et al. From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases. Euro Heart J. 2020;41(40):3884–3899. doi: 10.1093/eurheartj/ehaa229
  25. Ray KK, Molemans B, Schoonen MW, et al. EU-wide cross-sectional observational study of lipid-modifying therapy use in secondary and primary care: the DA VINCI Study. Eur J Prev Cardiol. 2021;28(11):1279–1289. doi: 10.1093/eurjpc/zwaa047
  26. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–1722. doi: 10.1056/NEJMoa1615664
  27. Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379(22):2097–2107. doi: 10.1056/NEJMoa1801174
  28. Ray KK, Stoekenbroek RM, Kallend D, et al. Effect of an siRNA therapeutic targeting PCSK9 on atherogenic lipoproteins. Circulation. 2018;138(13):1304–1316. doi: 10.1161/CIRCULATIONAHA.118.034710
  29. Ray KK, Wright RS, Kallend D, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020;382(16):1507–1519. doi: 10.1056/NEJMoa1912387
  30. Pinkosky SL, Newton RS, Day EA, et al. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat Commun. 2016;7:13457. doi: 10.1038/ncomms13457
  31. Ray KK, Bays HE, Catapano AL, et al. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N Engl J Med. 2019;380(11):1022–1032. doi: 10.1056/NEJMoa1803917
  32. Banach M, Duell PB, Gotto AM Jr, et al. Association of bempedoic acid administration with atherogenic lipid levels in phase 3 randomized clinical trials of patients with hypercholesterolemia. JAMA Cardiol. 2020;5(10):1124–1135. doi: 10.1001/jamacardio.2020.2314
  33. Wang X, Zhang Y, Tan H, et al. Efficacy and safety of bempedoic acid for prevention of cardiovascular events and diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol. 2020;19(1):128. doi: 10.1186/s12933-020-01101-9
  34. Nicholls SJ, Lincoff AM, Bays HE, et al. Rationale and design of the CLEAR-Outcomes trial: evaluating the effect of bempedoic acid on cardiovascular events in patients with statin intolerance. Am Heart J. 2021;235:104–112. doi: 10.1016/j.ahj.2020.10.060
  35. Ballantyne CM, Laufs U, Ray KK, et al. Bempedoic acid plus ezetimibe fixed-dose combination in patients with hypercholesterolemia and high CVD risk treated with maximally tolerated statin therapy. Eur J Prev Cardiol. 2020;27(6):593–603. doi: 10.1177/2047487319864671
  36. Rubino J, Macdougall DE, Sterling LR, et al. Lipid lowering with bempedoic acid added to a proprotein convertase subtilisin/kexin type 9 inhibitor therapy: a randomized, controlled trial. J Clin Lipidol. 2021;15(4):593–601. doi: 10.1016/j.jacl.2021.05.002
  37. Bays HE, Banach M, Catapano AL, et al. Bempedoic acid safety analysis: pooled data from four phase 3 clinical trials. J Clin Lipidol. 2020;14(5):649–659. doi: 10.1016/j.jacl.2020.08.009
  38. Rosenson RS, Brewer HB Jr, Barter PJ, et al. HDL and atherosclerotic cardiovascular disease: genetic insights into complex biology. Nat Rev Cardiol. 2018;15(1):9–19. doi: 10.1038/nrcardio.2017.115
  39. Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol. 2011;8(4):222–232. doi: 10.1038/nrcardio.2010.222
  40. Madsen CM, Varbo A, Nordestgaard BG. Novel insights from human studies on the role of high-density lipoprotein in mortality and noncardiovascular disease. Arterioscler Thromb Vasc Biol. 2021;41(1):128–140. doi: 10.1161/ATVBAHA.120.314050
  41. Landray MJ, Haynes R, Hopewell JC, et al. Hps2-Thrive Collaborative Group. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203–212. doi: 10.1056/NEJMoa1300955
  42. Boden WE, Probstfield JL, Anderson T, et al. AIM-HIGH Investigators. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24): 2255–2267. doi: 10.1056/NEJMoa1107579
  43. Schwartz GG, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–2099. doi: 10.1056/NEJMoa1206797.
  44. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–2122. doi: 10.1056/NEJMoa0706628
  45. Lincoff AM, Nicholls SJ, Riesmeyer JS, et al. ACCELERATE Investigators. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med. 2017;376:1933–1942. doi: 10.1056/NEJMoa1609581
  46. Bowman L, Hopewell JC, Chen F, et al. HPS3/TIMI55-REVEAL Collaborative Group. Effects of anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med. 2017;377:1217–1227. doi: 10.1056/NEJMoa1706444
  47. Gibson MC, Kastelein JJP, Phillips AT, et al. Rationale and design of ApoA-I Event Reducing in Ischemic Syndromes II (AEGIS-II): a phase 3, multicenter, double-blind, randomized, placebo-controlled, parallel-group study to investigate the efficacy and safety of CSL112 in subjects after acute myocardial infarction. Am Heart J. 2021;231:121–127. doi: 10.1016/j.ahj.2020.10.052
  48. Klempfner R, Erez A, Sagit B-Z, et al. Elevated triglyceride level is independently associated with increased all-cause mortality in patients with established coronary heart disease. Circ Cardiovasc Qual Outcom. 2016;9(2):100–108. doi: 10.1161/CIRCOUTCOMES.115.002104
  49. Pradhan AD, Glynn RJ, Fruchart J-C, et al. Triglyceride lowering with pemafibrate to reduce cardiovascular risk. N Engl J Med. 2022;387(21):1923–1934. doi: 10.1056/NEJMoa2210645
  50. Duran EK, Pradhan AD. Triglyceride-rich lipoprotein remnants and cardiovascular disease. Clin Chem. 2021;67(1):183–196. doi: 10.1093/clinchem/hvaa296
  51. Gaudet D, Karwatowska-Prokopczuk E, Baum SJ, et al. Vupanorsen study investigators. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur Heart J. 2020;41(40):3936–3945. doi: 10.1093/eurheartj/ehaa689
  52. Rosenson RS, Burgess LJ, Ebenbichler CF, et al. Evinacumab in patients with refractory hypercholesterolemia. N Engl J Med. 2020;383:2307–2319. doi: 10.1056/NEJMoa2031049
  53. Gouni-Berthold I, Alexander VJ, Yang Q, et al. COMPASS Study Group. Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021;9(5):264–275. doi: 10.1016/S2213-8587(21)00046-2
  54. Grosskopf I, Baroukh N, Lee SJ, et al. Apolipoprotein A-V deficiency results in marked hypertriglyceridemia attributable to decreased lipolysis of triglyceride-rich lipoproteins and removal of their remnants. Arterioscler Thromb Vasc Biol. 2005;25(12): 2573–2579. doi: 10.1161/01.ATV.0000186189.26141
  55. Thanassoulis G, Campbell CY, Owens DS, et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368:503–512. doi: 10.1056/NEJMoa1109034
  56. Stiekema LCA, Prange KHM, Hoogeveen RM, et al. Potent lipoprotein(a) lowering following apolipoprotein(a) antisense treatment reduces the pro-inflammatory activation of circulating monocytes in patients with elevated lipoprotein(a). Eur Heart J. 2020;41(24):2262–2271. doi: 10.1093/eurheartj/ehaa171
  57. Mitsuhiro Y, Hideki O, Masunori M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369(9567):1090–1098. doi: 10.1016/S0140-6736(07)60527-3
  58. Tavazzi L, Maggioni AP, Marchioli R, Barlera S. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9645):1223–1230. doi: 10.1016/S0140-6736(08)61239-8
  59. Aung T, Halsey J, Kromhout D, et al. Omega-3 Treatment Trialists’ Collaboration. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77917 individuals. JAMA Cardiol. 2018;3(3):225–234. doi: 10.1001/jamacardio.2017.5205
  60. Bhatt DL, Steg PG, Miller M, et al. REDUCE-IT Investigators. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11–22. doi: 10.1056/NEJMoa1812792
  61. Mason RP, Libby P, Bhatt DL. Emerging mechanisms of cardiovascular protection for the Omega-3 fatty acid eicosapentaenoic acid. Arterioscler Thromb Vasc Biol. 2020;40(5):1135–1147. doi: 10.1161/ATVBAHA.119.313286
  62. Mega JL, Stitziel NO, Smith JG, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet. 2015;385(9984):2264–2271. doi: 10.1016/S0140-6736(14)61730-X

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Targets for lipid-lowering therapy

Download (75KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies