Features of cognitive impairment in patients with thyroid dysfunction

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The study presents research results on the effect of thyroid hormones on cognitive function in patients with thyroid diseases. The study highlighted the mechanisms of the development of cognitive disorders in these patients, which include altered neurotransmission processes and expression of genes responsible for the proliferation of neurons and glial cells, blood–brain barrier dysfunction, decreased plasticity of neurons, and damage to brain tissue repair systems, which allows for identifying new therapeutic strategies for the treatment of cognitive disorders. Thyroid metabolism disorders are manifested by numerous symptoms, including those associated with cognitive deficits. Thus, the true cause of the disease must be identified, since the correction of thyroid hormone levels will lead to symptom regression, whereas symptomatic treatment is not always effective and may worsen the course of the underlying disease. In patients from different age groups, thyroid dysfunction is one of the causes of cognitive impairment. Cognitive decline, dysphoria, and depression are the most common in hypothyroidism, and thyrotoxicosis is accompanied by symptoms of arousal, mood lability, psychosis, and apathy. Cognitive impairment negatively affects the quality of life of patients, worsens treatment adherence, and can promote the development of acute and chronic complications associated with thyroid diseases. An equally important problem is the insufficiency of objective criteria for the verification of cognitive impairment and the lack of effective treatment methods and consequently the late and ineffective implementation of therapeutic measures. In general, thyroid dysfunction is accompanied by various neurocognitive disorders, and severity depends on sex and the etiology, duration, and severity of the disease. Correction of thyroid metabolism disorders does not always eliminate cognitive impairments; therefore, a multidisciplinary approach is needed, with the participation of not only endocrinologists but also specialists in neuropsychiatric profile. Further research on the pathogenesis of cognitive disorders in thyroid dysfunction will allow for identifying new therapeutic strategies aimed at early detection and correction of cognitive deficits, reducing the risk of neurodegenerative processes, and ultimately will reduce the treatment and rehabilitation time.

Full Text

Restricted Access

About the authors

Boris V. Romashevsky

Kirov Medical Military Academy

Email: borisrom1966@mail.ru
ORCID iD: 0000-0002-6219-5056
SPIN-code: 8923-8025

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Vladimir V. Salukhov

Kirov Medical Military Academy

Email: vlasaluk@yandex.ru
ORCID iD: 0000-0003-1851-0941
SPIN-code: 4531-6011

MD, Dr. Sci. (Med.), associate professor

Russian Federation, Saint Petersburg

Oksana V. Maxim

Kirov Medical Military Academy

Author for correspondence.
Email: ovmaks1611@mail.ru
ORCID iD: 0000-0003-0808-3325
SPIN-code: 3914-5051

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

References

  1. Göbel A, Göttlich M, Reinwald J, et al. The influence of thyroid hormones on brain structure and function in humans. Exp Clin Endocrinol Diabetes. 2020;128(6-7):432–436. doi: 10.1055/a-1101-9090
  2. Jurado-Flores M, Firas W, Mooradian A. Pathophysiology and clinical features of neuropsychiatric manifestations of thyroid disease. J Endocrine Soc. 2022;6(2):bvab194. doi: 10.1210/jendso/bvab194
  3. Rieben C, Segna D, da Costa BR, et al. Subclinical thyroid dysfunction and the risk of cognitive decline: a meta-analysis of prospective cohort studies. J Clin Endocrinol Metab. 2016;101(12):4945–4954. doi: 10.1210/jc.2016-2129
  4. Sinitsina JV, Kotova SM, Tochilov VA, Khetagurova FK. Psychoemotional status features in patients with thyroid gland pathology. Russian Family Doctor. 2014;18(3):35–41. (In Russ.). doi: 10.17816/RFD2014335-41
  5. Sobolevskaia PA, Stroev YuI, Fedotkina TV, Churilov LP. On the cerebral effects of the thyroid hormones. Russian Biomedical Research. 2021;6(4):15–22. (In Russ.).
  6. Maksim OV, Romashevsky BV, Demyanenko NYu. Features of the pathogenesis of thyroid diseases in COVID-19. Farmateka. 2023;(3):34–43. (In Russ.). doi: 10.18565/pharmateca.2023.3.34-43
  7. Samuels MH. Thyroid disease and cognition. Endocrinol Metabol Clin North Am. 2014;43(2):529–543. doi: 10.1016/j.ecl.2014.02.006
  8. Kim HK, Song J. Hypothyroidism and diabetes-related dementia: focused on neuronal dysfunction, insulin resistance, and dyslipidemia. Int J Mol Sci. 2022;23(6):2982. doi: 10.3390/ijms23062982
  9. Lauffer P, Zwaveling-Soonawala N, Naafs JC, et al. Diagnosis and management of central congenital hypothyroidism. Front Endocrinol. 2021;12:686317. doi: 10.3389/fendo.2021.686317
  10. Demin DB. Effects of thyroid hormones in the development of the nervous system (review). Journal of Medical and Biological Research. 2018;6(2):115–127. (In Russ.). doi: 10.17238/issn2542-1298.2018.6.2.115/
  11. Fedotova YuO, Sapronov NS. Ehffekty tireoidnykh gormonov v tsentral’noi nervnoi sisteme. Shalyapina VG, Shabanov PD, editors. Osnovy neiroehndokrinologii. Saint Petersburg; Ehlbi-SPb, 2005. 472 p. (In Russ.).
  12. Heuer H. The importance of thyroid hormone transporters for brain development and function. Best Pract Res Clin Endocrinol Metab. 2007;21(2):265–276. doi: 10.1016/j.beem.2007.03.003
  13. Laurino A, Gencarelli M, Raimondi L. The 3-iodothyronamine (T1AM) and the 3-iodothyroacetic acid (TA1) indicate a novel connection with the histamine system for neuroprotection. Eur J Pharmacol. 2021;912:174606. doi: 10.1016/j.ejphar.2021.174606
  14. Sandler B, Webb P, Apriletti JW, et al. Thyroxine-thyroid hormone receptor interactions. J Biol Chem. 2004;279(53):55801–55808. doi: 10.1074/jbc.M410124200
  15. Filimonov DA, Yevtushenko SK, Fedorova AA. Molecular mechanisms of neuroprotective effects of thyroid hormones and their metabolites in acute brain ischemia. Annals of Clinical and Experimental Neurology. 2023;17(1):43–54. (In Russ.). doi: 10.54101/ACEN.2023.1.6
  16. Heuer H, Mason CA. Thyroid hormone induces cerebellar Purkinje cell dendritic development via the thyroid hormone receptor α1. J Neurosci. 2003;23(33):10604–10612. doi: 10.1523/JNEUROSCI.23-33-10604.2003
  17. Cheng S-Y, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocrine Rev. 2010;31(2):139–170. doi: 10.1210/er.2009-0007
  18. Kapoor R, Desouza LA, Nanavaty IN, et al. Thyroid hormone accelerates the differentiation of adult hippocampal progenitors. J Neuroendocrinol. 2012;24(9):1259–1271. doi: 10.1111/j.1365-2826.2012.02329.x
  19. Przybylak M, Grabowski J, Bidzan L. Cognitive functions and thyroid hormones secretion disorders. Psychiatr Pol. 2021;55(2): 309–321. doi: 10.12740/PP/112470
  20. Zucchi R, Chiellini G, Scanlan TS, Grandy DK. Traceamine-associated receptors and their ligands. Br J Pharmacol. 2006;149(8):967–978. doi: 10.1038/sj.bjp.0706948
  21. Talhada D, Feiteiro J, Costa AR, et al. Triiodothyronine modulates neuronal plasticity mechanisms to enhance functional outcome after stroke. Acta Neuropathol Commun. 2019;7(1):216. doi: 10.1186/S40478-019-0866-4/FIGURES/7
  22. Bellusci L, Runfola M, Carnicelli V, et al. Endogenous 3-Iodothyronamine (T1AM) and synthetic thyronamine-like analog SG-2 act as novel pleiotropic neuroprotective agents through the modulation of SIRT6. Molecules. 2020;25(5):1054. doi: 10.3390/molecules25051054
  23. Rutigliano G, Bandini L, Sestito S, Chiellini G. 3-Iodothyronamine and derivatives: New allies against metabolic syndrome? Int J Mol Sci. 2020;21(6):2005. doi: 10.3390/ijms21062005
  24. Biryukova EV, Kileynikov DV, Solovyeva IV. Hypothyroidism: current state of the problem. Medical Council. 2020;(7):96–107. (In Russ.). doi: 10.21518/2079-701X-2020-7-96-107
  25. Rieben C, Segna D, da Costa BR, et al. Subclinical thyroid dysfunction and the risk of cognitive decline: a meta-analysis of prospective cohort studies. J Clin Endocrinol Metabol. 2016;101(12):4945–4954. doi: 10.1210/jc.2016-2129
  26. Leng O, Razvi S. Hypothyroidism in the older population. Endocrinology: News, Opinions, Training. 2019;8(2):118–129. (In Russ.).
  27. Wekking EM, Appelhof BC, Fliers E, et al. Cognitive functioning and well-being in euthyroid patients on thyroxine replacement therapy for primary hypothyroidism. Eur J Endocrinol. 2005;153(6):747–753. doi: 10.1530/eje.1.02025
  28. Kaleka KS, Gerges NZ. Neurogranin restores amyloid β-mediated synaptic transmission and long-term potentiation deficits. Exp Neurol. 2016;277:115–23. doi: 10.1016/j.expneurol.2015.12.013
  29. Bavarsad K, Hosseini M, Hadjzadeh M-A-R, Sahebkar A. The effects of thyroid hormones on memory impairment and Alzheimer’s disease. J Cell Physiol. 2019;234(9):14633–14640. doi: 10.1002/jcp.28198
  30. Haji M, Kimura N, Hanaoka T, et al. Evaluation of regional cerebral blood flow in Alzheimer’s disease patients with subclinical hypothyroidism. Dement Geriatr Cogn Disord. 2015;39(5-6):360–367. doi: 10.1159/000375298
  31. Cooke GE, Mullally S, Correia N, et al. Hippocampal volume is decreased in adults with hypothyroidism. Thyroid. 2014;24(3): 433–440. doi: 10.1089/thy.2013.0058
  32. Wang F, Zeng X, Zhu Y, et al. Effects of thyroxine and donepezil on hippocampal acetylcholine content, acetylcholinesterase activity, synaptotagmin-1 and SNAP-25 expression in hypothyroid adult rats. Mol Med Rep. 2015;11(2):775–782. doi: 10.3892/mmr.2014.2825
  33. Schmitt JAJ, Wingen M, Ramaekers JG, et al. Serotonin and human cognitive performance. Curr Pharm Des. 2006;12(20): 2473–2486. doi: 10.2174/138161206777698909
  34. Khaleghzadeh-Ahangar H, Talebi A, Mohseni-Moghaddam P. Thyroid disorders and development of cognitive impairment: A review study. Neuroendocrinology. 2022;112(9):835–844. doi: 10.1159/000521650
  35. Bauer M, Silverman DHS, Schlagenhauf F, et al. Brain glucose metabolism in hypothyroidism: a positron emission tomography study before and after thyroid hormone replacement therapy. J Clin Endocrinol Metabol. 2009;94(8):2922–2929. doi: 10.1210/jc.2008-2235
  36. Salukhov VV, Romashevsky BV. Cognitive complications of patients with diabetes mellitus: modern aspects of pathogenesis and treatment. Medline.Ru. 2018;19:1178–1203. (In Russ.).
  37. Salukhov VV, Kotova ME. Main effects caused by SGLT 2 inhibitors in patients with type 2 diabetes and the mechanisms that determine them. Endocrinology: News, Opinions, Training. 2019;8(3): 61–74. (In Russ.).
  38. Chaker L, Baumgartner C, den Elzen WPJ, et al. Subclinical hypothyroidism and the risk of stroke events and fatal stroke: an individual participant data analysis. J Clin Endocrinol Metabol. 2015;100(6):2181–2191. doi: 10.1210/jc.2015-1438
  39. Squizzato A, Gerdes VEA, Brandjes DPM, et al. Thyroid diseases and cerebrovascular disease. Stroke. 2005;36(10):2302–2310. doi: 10.1161/01.STR.0000181772.78492.07
  40. Murolo M, Di Vincenzo O, Cicatiello AG, et al. Cardiovascular and neuronal consequences of thyroid hormones alterations in the ischemic. Stroke. Metabolites. 2022;13(1):22. doi: 10.3390/metabo13010022
  41. Bagnenko SF, Kryukova EV, editors. Ozhirenie i assotsiirovannye zabolevaniya. Konservativnoe i khirurgicheskoe lechenie: rukovodstvo dlya vrachei. Saint Petersburg: SpetsLit, 2022. 478 p. (In Russ.).
  42. Kuznetsova EB, Gerasimov SV, Sholomov II. Neuron specific enolase as a marker of the nervous system damage in primary hypothyroidism. Saratov Journal of Medical Scientific Research. 2016;12(2):264–267. (In Russ.).
  43. Demidova TYu, Bolshakova TV, Bondarenko YeV. Graves’ disease in clinical practice of a therapist. The Therapy journal. 2017;(5):49–57. (In Russ.).
  44. Muratova ShT, Ismailov SI. Influence of Graves’ disease on psychocognitive state of children and adults (Literature Review). International neurological journal. 2016;(5):167–170. (In Russ.). doi: 10.22141/2224-0713.5.83.2016.78483
  45. Yudiarto FL, Muliadi L, Moeljanto D, Hartono B. Neuropsychological findings in hyperthyroid patients. Acta Med Indones. 2006;38(1):6–10.
  46. Kim J-M, Stewart R, Kim S-Y, et al. Thyroid stimulating hormone, cognitiveimpairment and depression in an older Korean population. Psychiatry Investig. 2010;7(4):264–269. doi: 10.4306/pi.2010.7.4.264
  47. Kalmijn S, Mehta KM, Pols HAP. Subclinical hyperthyroidism and therisk of dementia: the Rotterdam study. Clin Endocrinol (Oxf). 2000;53(6):733–737. doi: 10.1046/j.1365-2265.2000.01146.x
  48. Vadiveloo T, Donnan PT, Cochrane L, Leese GP. The thyroid epidemiology, audit, and research study (TEARS): morbidity in patients with endogenous subclinical hyperthyroidism. J Clin Endocrinol Metabol. 2011;96(5):1344–1351. doi: 10.1210/jc.2010-2693
  49. Vogel A, Elberling TV, Hørding M, et al. Affective symptoms and cognitive functions in the acute phase of Graves’ thyrotoxicosis. Psychoneuroendocrinology. 2007;32(1):36–43. doi: 10.1016/j.psyneuen.2006.09.012
  50. Fadeyev VV. Review of European thyroid association guideline (2018) for the management of Graves’ hyperthyroidism. Clinical and experimental thyroidology. 2020;16(1):4–20. (In Russ.). doi: 10.14341/ket12474
  51. Salukhov VV, Kovalevskaya EA. Amiodarone-induced thyrotoxicosis: a modern view of the problem. Farmateka. 2023;(3):54–63. (In Russ.). doi: 10.18565/pharmateca.2023.3.54-63
  52. Tang X, Song Z-H, Wang D, et al. Spectrum of thyroid dysfunction and dementia: a dose-response metaanalysis of 344,248 individuals from cohort studies. Endocr Connect. 2021;10(4):410–421. doi: 10.1530/EC-21-0047
  53. Danielsen ER, Elberling T, Rasmussen AK, et al. Reduced parietooccipital white matter glutamine measured by proton magnetic resonance spectroscopy in treated Graves’ disease patients. J Clin Endocrinol Metabol. 2008;93(8):3192–3198. doi: 10.1210/jc.2007-2161
  54. Shustov SB, Khalimov YuSh, Salukhov VV, Trufanov GE. Funktsional’naya i topicheskaya diagnostika v ehndokrinologii: rukovodstvo dlya vrachei. 3-e izd., pererab. i dop. Moscow: GEOTAR-Media, 2017. 270 p. (In Russ.).
  55. Schreckenberger MF, Egle UT, Drecker S, et al. Positron emission tomography reveals correlations between brain metabolism and mood changes in hyperthyroidism. J Clin Endocrinol Metabol. 2006;91(12):4786–4791. doi: 10.1210/jc.2006-0573
  56. Gan EH, Pearce SHS. The thyroid in mind: cognitive function and low thyrotropin in older people. J Clin Endocrinol Metabol. 2012;97(10):3438–3449. doi: 10.1210/jc.2012-2284
  57. Khaleghzadeh-Ahangar H, Talebi A, Mohseni-Moghaddam P. Thyroid disorders and development of cognitive impairment: A review study. Neuroendocrinology. 2022;112(9):835–844. doi: 10.1159/000521650
  58. Subhadra B, Schaller K, Seeds NW. Neuroserpin up-regulation in the Alzheimer’s disease brain is associated with elevated thyroid hormone receptor-β1 and HuD expression. Neurochem Int. 2013;63(5):476–481. doi: 10.1016/j.neuint.2013.08.010
  59. Quinlan P, Horvath A, Eckerström C, et al. Altered thyroid hormone profile in patients with Alzheimer’s disease. Psychoneuroendocrinology. 2020;121:104844. doi: 10.1016/j.psyneuen.2020.104844

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of thyroid hormones on the central nervous system (adapted by M. Jurado-Flores, F. Warda, A. Mooradian [2])

Download (186KB)
3. Fig. 2. Transport of thyroid hormones in the central nervous system

Download (341KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies