Dynamics in the content of the cytokines in the bronchoalveolar lavage fluid in rats after acute inhalation intoxication by clorine and pyrolysis products, containing hydrogen chloride

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

It is known that inhalation exposure to chlorine and hydrogen chloride leads to damage to the respiratory system up to the development of acute pulmonary edema in victims. No data on the mechanisms of development of pulmonary edema upon exposure to hydrogen chloride have been found in the available literature. The study was carried out on white outbred male rats, which were divided into 3 groups: Group I — control; Group II — animals were intoxicated with chlorine at a dose of 1.5 median lethal concentration (30 min); Group III — animals were intoxicated with hydrogen chloride at a dose of 1.5 median lethal concentration (30 min). Immediately after exposure to the studied toxicants, as well as after 1, 3 and 6 h, the lung coefficient and the content of cytokines (interleukins-1β, 6, 10 and interferon-γ) in the bronchoalveolar lavage fluid were determined in animals. It was revealed that an increase in the lung coefficient (p < 0.05) in animals in groups II and III was accompanied by a significant increase (1.5 times) in the content of the studied cytokines in the bronchial-alveolar lavage fluid compared with animals in group I. III an increase (p < 0.05) in the content of cytokines is recorded later — only 3 hours after exposure, while it is significantly lower than in animals of group II at all studied periods. Thus, intoxication with hydrogen chloride leads to a slower development of pulmonary edema and an increase in the content of both pro (interleukins-1β, 6) and anti-inflammatory cytokines (interleukin-10, interferon-γ) in the bronchial-alveolar lavage fluid compared to animals, exposed to chlorine intoxication.

Full Text

Restricted Access

About the authors

Petr K. Potapov

Military Medical Academy named after S.M. Kirov

Author for correspondence.
Email: Footballprospb@gmail.com
SPIN-code: 5979-4490

Adjunct

Russian Federation, Saint Petersburg

Pavel G. Gennad`evich

Military Medical Academy named after S.M. Kirov

Email: Footballprospb@gmail.com
SPIN-code: 4304-1890

candidate of medical sciences

Russian Federation, Saint Petersburg

Nadezhda Yu. Rogovskaya

Research Institute of Hygiene, Occupational Pathology and Human Ecology FMBA of Russia

Email: Footballprospb@gmail.com

researcher

Russian Federation, Saint Petersburg

Vladimir N. Babakov

Research Institute of Hygiene, Occupational Pathology and Human Ecology FMBA of Russia

Email: Footballprospb@gmail.com

candidate of biological sciences

Russian Federation, Saint Petersburg

Vadim A. Basharin

Military Medical Academy named after S.M. Kirov

Email: Footballprospb@gmail.com

doctor of medical sciences, professor

Russian Federation, Saint Petersburg

References

  1. Torkunov PA, Shabanov PD. Pulmonary edema: pathogenesis, modeling, methodology for studying. Reviews on clinical pharmacology and drug therapy. 2009;6(2):3–54. (In Russ.)
  2. White CW, Martin JG. Chlorine gas inhalation: human clinical evidence of toxicity and experience in animal models. Proceedings of the American Thoracic Society. 2010;7(4):257–263. doi: 10.1513/pats.201001-008SM
  3. World Health Organization. International statistical classification of diseases and related health problems. World Health Organization. 2004;1(1):698. (In Russ.)
  4. Barrow CS, Alarie Y, Warrick JC, et al. Comparison of the sensory irritation response in mice to chlorine and hydrogen chloride. Archives of Environmental Health: An International Journal. 1977;32(2):68–76. doi: 10.1080/00039896.1977.10667258
  5. Miller SN. Acute toxicity of respiratory irritant exposures. The Toxicant Induction of Irritant Asthma, Rhinitis, and Related Conditions. Boston: Springer. 2013;83–101. doi: 10.1007/978-1-4614-9044-9_4
  6. Potapov PK, Dimitriev YuV, Tolkach PG. Ctrukturno-funkcional’nye narusheniya dyhatel’noj sistemy u laboratornyh zhivotnyh pri intoksikacii produktami piroliza hlorsoderzhashchih polimernyh materialov. Medicinskij akademicheskij zhurnal. 2020;(3):13–22. (In Russ.)
  7. Banadykov KD, Lyutenko ER, Alibekova AI, et al. Sovremennye aspekty toksicheskogo dejstviya hlora. Tverskoj medicinskij zhurnal. 2016;(2):21–22. (In Russ.)
  8. Ketlinsky SA, Simbirtsev AS. Cytokines. St. Petersburg: Folio, 2008. (In Russ.)
  9. Chuchalin AG. Biologicheskie markery pri respiratornyh zabolevaniyah. Terapevticheskij arhiv. 2014;86(3):4–13. (In Russ.)
  10. Directive 2010/63/EU of the European Parliament and of the Council of the European Union on the protection of animals used for scientific purposes, dated 22 September 2010. (In Russ.)
  11. Beck G. Etude cyto-bactériologique quantitative de l’expectoration chez le bronchiteux chronique. Revue francaise des maladies respiratoires. 1980;8(5):357–366. (In Fr.)
  12. Davidjuk OV, Docenko AM, Kosolapov DA. Ponjatie i provedenie probit-analiza pri reshenii zadach kolichestvennoj ocenki riska avarij. Bezopasnost’ truda v promyshlennosti. 2009;4:48–51. (In Russ.)
  13. Pugach VA, Tyunin MA, Vlasov TD, et al. Biomarkery ostrogo respiratornogo distress-sindroma: problemy i perspektivy ih primeneniya. Vestnik anesteziologii i reanimatologii. 2019;16(4):38–46. (In Russ.)
  14. Serebrennikova SN, Seminskij IZh. Rol’ citokinov v vospalitel’nom processe (soobshchenie 1). Sibirskij medicinskij zhurnal. 2008;81(6):5–8. (In Russ.)
  15. Chuchalin AG. Pulmonary oedema: physiology of lung circulation, pathophysiology of pulmonary oedema. Russian pulmonology journal. 2005;(21):1374–1382. (In Russ.). doi: 10.18093/0869-0189-2005-0-4-9-18
  16. Rodionov GG, Hurcilava OG, Pluzhnikov NN, et al. Oksidativnyj stress i vospalenie: patogeneticheskoe partnerstvo. Saint Petersburg: Severo-Zapadnyj gosudarstvennyj medicinskij universitet im. I.I. Mechnikova, 2012. 340 p. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of the lung coefficient in rats at different times after Cl2 and HCl intoxication (1.5 LC50, 30 min).

Download (9KB)
3. Fig. 2. Dynamics of IL-1β (a) and IL-6 (b) content in the BALF of laboratory animals at different times after Cl2 and HCl intoxication (1,5LC50, 30 min).

Download (18KB)
4. Fig. 3. Dynamics of IL-10 (c) and IFN-γ (d) content in the BALF of laboratory animals at different times after Cl2 and HCl intoxication (1,5LC50, 30 min).

Download (16KB)

Copyright (c) 2021 Potapov P.K., Gennad`evich P.G., Rogovskaya N.Y., Babakov V.N., Basharin V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies