Chronic heart failure associated genetic polymorphisms

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The genetic associations between single-nucleotide polymorphisms of genes and chronic heart failure in phenotypically similar groups of patients were examined. The known information about single-nucleotide polymorphisms associated with the main pathogenetic links of chronic heart failure is systematized. Using electronic databases (PubMed, Web of Science, eLibrary), a search and synthesis of scientific works was conducted, followed by the formation of groups of genes homogeneous in their functionality (i.e., genes of the metabolic cascade, coagulation cascade, and neuroendocrine cascade). From >50 literary sources analyzed, 15 of the most specific genes were identified (ApoA1, ApoE, ApoC3, GNB3, FTO, PON-1, ET(A), EDNRA, F13, ITGB3, PAI-1, VEGF, ACE, AGT, AGTR1), contributing in metabolic processes, the hemostatic system, endothelial function, and regulation of the renin–angiotensin–aldosterone system and associated with the development of chronic heart failure. The most significant contribution of these genes in the development of regulatory and structural disorders characteristic of the pathogenetic phenotype of chronic heart failure has been proven. The results are ambiguous. Thus, in individuals who have a polymorphic gene variant in their genotype associated with the risk of developing a disease, the possibility of its manifestation is considerably higher; however, this does not confirm the development of the disease. Moreover, a correlation was noted between ejection fraction in patients with chronic heart failure and gene polymorphisms associated with renin–angiotensin–aldosterone system dysfunction and metabolic cascade. Chronic heart failure is a polygenic disease. Hence, this allows for further research into groups of coordinately functioning genes that are part of genetic regulatory networks, enabling a more complete understanding of the etiology and pathophysiological mechanisms of this nosology with the aim of subsequent early identification of individuals belonging to the risk group and the creation of a set of measures for individual prevention diseases. We believe that the development of chronic heart failure with low ejection fraction is primarily responsible for gene polymorphisms associated with disorders of the renin–angiotensin–aldosterone system and for the development of chronic heart failure with preserved ejection fraction — gene polymorphisms associated with metabolic cascade disorders.

Full Text

Restricted Access

About the authors

Tatiana S. Sveklina

Kirov Military Medical Academy

Author for correspondence.
Email: Sveklinats@mail.ru
ORCID iD: 0000-0001-9546-7049
SPIN-code: 3561-6503

MD, Cand. Sci. (Med.), associate professor

Russian Federation, Saint Petersburg

Sergey B. Shustov

Kirov Military Medical Academy

Email: Sveklinats@mail.ru
ORCID iD: 0000-0002-9075-8274
SPIN-code: 5237-2036

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Svetlana N. Kolyubaeva

Kirov Military Medical Academy

Email: Sveklinats@mail.ru
ORCID iD: 0000-0003-2441-9394
SPIN-code: 2077-2557

Dr. Sci. (Biol.)

Russian Federation, Saint Petersburg

Vadim A. Kozlov

Chuvash State University

Email: Sveklinats@mail.ru
ORCID iD: 0000-0001-7488-1240
SPIN-code: 1915-5416

Dr. Sci. (Biol.), MD, Cand. Sci. (Med.), professor

Russian Federation, Cheboksary

Polina D. Oktysyuk

Kirov Military Medical Academy

Email: Sveklinats@mail.ru
ORCID iD: 0000-0003-1956-2110
SPIN-code: 7889-6129

5th year student

Russian Federation, Saint Petersburg

Vladislav V. Konyaev

Kirov Military Medical Academy

Email: Sveklinats@mail.ru
ORCID iD: 0000-0002-8347-2286
SPIN-code: 3002-5668

5th year student

Russian Federation, Saint Petersburg

References

  1. Feingold J. Multifactorial diseases: a nightmare for the geneticist. Med Sci (Paris). 2005;21(11):927–33. doi: 10.1051/medsci/20052111927
  2. Arvanitis M, Tampakakis E, Zhang Y, et al. Genome-wide association and multi-omic analyses reveal ACTN2 as a gene linked to heart failure. Nat Commun. 2020;11(1):1122. doi: 10.1038/s41467-020-14843-7
  3. Dall’Olio GM, Bertranpetit J, Wagner A, Laayouni H. Human genome variation and the concept of genotype networks. PLoS One. 2014;9(6):e99424. doi: 10.1371/journal.pone.0099424
  4. Materna SC, Davidson EH. Logic of gene regulatory networks. Curr Opin Biotechnol. 2007;18(4):351–354. doi: 10.1016/j.copbio.2007.07.008
  5. Boyle AP, Araya CL, Brdlik C, et al. Comparative analysis of regulatory information and circuits across distant species. Nature. 2014;512(7515):453–456. doi: 10.1038/nature13668
  6. Chen YR, Huang HC, Lin CC. Regulatory feedback loops bridge the human gene regulatory network and regulate carcinogenesis. Brief Bioinform. 2019;20(3):976–984. doi: 10.1093/bib/bbx166
  7. Suresh NT, E R V, U K. Multi-scale top-down approach for modelling epileptic protein-protein interaction network analysis to identify driver nodes and pathways. Comput Biol Chem. 2020;88:107323. doi: 10.1016/j.compbiolchem.2020.107323
  8. Li J, Wang Y, Xiao H, Xu C. Gene selection of rat hepatocyte proliferation using adaptive sparse group lasso with weighted gene co-expression network analysis. Comput Biol Chem. 2019;80: 364–373. doi: 10.1016/j.compbiolchem.2019.04.010
  9. Van de Sande B, Flerin C, Davie K, et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc. 2020;15(7):2247–2276. doi: 10.1038/s41596-020-0336-2
  10. Sommer ME, Selent J, Carlsson J, et al. The European Research Network on Signal Transduction (ERNEST): Toward a Multidimensional Holistic Understanding of G Protein-Coupled Receptor Signaling. ACS Pharmacol Transl Sci. 2020;3(2):361–370. doi: 10.1021/acsptsci.0c00024
  11. McQueen E, Rebeiz M. On the specificity of gene regulatory networks: How does network co-option affect subsequent evolution? Curr Top Dev Biol. 2020;139:375–405. doi: 10.1016/bs.ctdb.2020.03.002
  12. Chioncel O, Lainscak M, Seferovic PM, et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail. 2017;19(12):1574–1585. doi: 10.1002/ejhf.813
  13. Lvovs D, Favorova OO, Favorov AV. Polygenic approach to the study of polygenic diseases. Acta Naturae. 2012;4(3):62–75. EDN: PEWKXF
  14. Koziolova NA, Chernyavina AI. The relationship of gene polymorphism with the heart failure risk in patients with hypertension and high adherence to treatment. Russian Journal of Cardiology. 2020;25(3):3708. EDN: UCAGMU doi: 10.15829/1560-4071-2020-3-3708
  15. Vaisberg AR, Tarlovskaya EI, Fomin IV, et al. Carbohydrate metabolism disorders in patients with heart failure: data from the local registry. Russian Journal of Cardiology. 2021;26(3):22–28. EDN: ALFRAY doi: 10.15829/1560-4071-2021-4330
  16. Tsygankova OV, Veretyuk VV. Phenotypic clusters in heart failure with preserved and mid-range ejection fraction: new data and perspectives. Russian Journal of Cardiology. 2021;26(4):4436. EDN: KWGLVJ doi: 10.15829/1560-4071-2021-4436
  17. Li-Ping D, Da H, Wei-Jun C. Meta-analysis of the association between Apo-A1 rs670, rs5069 polymorphisms and coronary artery diseases. Int J Clin Exp Med. 2018;11(7):6445–6453.
  18. Orlova NV, Chukaeva II, Sitnikov VF, Perevezentsev OA. Polymorphism of APOA1 and APOE genes and features of clinical manifestations of coronary artery disease. Bulletin of Russian State Medical University. 2009;(6):6–10. EDN: MEHRKJ
  19. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for themanagement of dyslipidaemias: lipid modification to reduce cardiovascular risk. Russian Journal of Cardiology. 2020;25(5):3826. doi: 10.15829/1560-4071-2020-3826
  20. Khalil YA, Rabès JP, Boileau C, Varret M. APOE gene variants in primary dyslipidemia. Atherosclerosis. 2021;328:11–22. doi: 10.1016/j.atherosclerosis.2021.05.007
  21. Gerdes LU, Jeune B, Ranberg KA, et al. Estimation of apolipoprotein E genotype-specific relative mortality risks from the distribution of genotypes in centenarians and middle-aged men: apolipoprotein E gene is a “frailty gene,” not a “longevity gene”. Genet epidemiol. 2000;19(3):202–210. doi: 10.1002/1098-2272(200010)19:3<202:AID-GEPI2>3.0.CO;2-Q
  22. Zhang JZ, Xie X, Ma YT, et al. Association between apolipoprotein C-III gene polymorphisms and coronary heart disease: A Meta-analysis. Aging Dis. 2016;7(1):36–44. doi: 10.14336/AD.2015.0709
  23. Rai H, Sinha N, Finn J, et al. Association of serum lipids and coronary artery disease with polymorphisms in the apolipoprotein AI-CIII-AIV gene cluster. Cogent Med. 2016;3(1):1266789. doi: 10.1080/2331205X.2016.1266789
  24. Mogilenko DA, Shavva VS, Dizhe EB, Orlov SV. Characterization of distal and proximal alternative promoters of the human apoa-i gene. Mol Biol (Mosk). 2019;53(3):485–496. doi: 10.1134/S0026898419030121
  25. Gbadoe KM, Berdouzi N, Aguiñano AA, et al. Cardiovascular diseases-related GNB3 C825T polymorphism has a significant sex-specific effect on serum soluble E-selectin levels. J Inflamm (Lond). 2016;13:39. doi: 10.1186/s12950-016-0146-z
  26. Siffert W, Rosskopf D, Moritz A, et al. Enhanced G protein activation in immortalized lymphoblasts from patients with essential hypertension. J Clin Invest. 1995;96(2):759–766. doi: 10.1172/JCI118120
  27. Pyvovar SM, Rudyk YuS, Lozyk TV, Galchinska VYu. “Polymorphism of C825T (rs5443) G-protein b3-subunit gene and the long-term prognosis for patients with heart failure. World of Medicine and Biology. 2019;15(1):88–93. EDN: ZCUZNB doi: 10.26724/2079-8334-2019-1-67-88
  28. Fall T, Hägg S, Mägi R, et al. The role of adiposity in cardiometabolic traits: a Mendelian randomization analysis. PLoS medicine. 2013;10(6):e1001474. doi: 10.1371/journal.pmed.1001474
  29. Äijälä M, Ronkainen J, Huusko T, et al. The fat mass and obesity-associated (FTO) gene variant rs9939609 predicts long-term incidence of cardiovascular disease and related death independent of the traditional risk factors. Ann Med. 2015;47(8):655–663. doi: 10.3109/07853890.2015.1091088
  30. Fisher E, Schulze MB, Stefan N, et al. Association of the FTO rs9939609 single nucleotide polymorphism with C-reactive protein levels. Obesity (Silver Spring). 2009;17(2):330–334. doi: 10.1038/oby.2008.465
  31. Kachnov VA, Koliubaeva SN, Tyrenko VV, et al. Investigation of genetic factors leading to cardiovascular diseases in persons with risk of sudden cardiac death. Genes & Cells. 2020;15(2):73–80. EDN: PGUQAC doi: 10.23868/202004018
  32. Martynovich TV, Akimova NS, Fedotov EA, Shvarts YuG. Polymorphism of genes associated with increased cardiovascular risk and cognitive functions in patients with chronic heart failure and healthy individuals. A pilot study. Russian Heart Failure Journal. 2015;16(2):93–99. (In Russ.) EDN: VHDOJP
  33. Abolfazl Y, Zahra MK, Seyed MEM, et al. CDKN2B-AS (rs2891168), SOD2 (rs4880) and PON1 (rs662) polymorphisms and susceptibility to coronary artery disease and type 2 diabetes mellitus in Iranian patients. Health Sci Rep. 2023;6(11):e1717. doi: 10.21203/rs.3.rs-2560221/v1
  34. Davenport AP, Hyndman KA, Dhaun N, et al. Endothelin. Pharmacol Rev. 2016;68(2):357–418. doi: 10.1124/pr.115.011833
  35. Hosoda K, Nakao K, Tamura N, et al. Organization, structure, chromosomal assignment, and expression of the gene encoding the human endothelin-A receptor. J Biol Chem. 1992;267(26): 18797–18804.
  36. Colombo MG, Ciofini E, Paradossi U, et al. ET-1 Lys198Asn and ET(A) receptor H323H polymorphisms in heart failure. A case-control study. Cardiology. 2006;105(4):246–252. doi: 10.1159/000092374
  37. Syed KN, Memoona Y, Asima R, et al. Endothelin 1 gene variant rs5370 and risk of coronary artery disease in the local population of Pakistan, a case-control study. Pure Appl Biol. 2021;10(4):1427–1435. doi: 10.19045/bspab.2021.100148
  38. Duval C, Ali M, Chaudhry WW, et al. Factor XIII A-subunit V34L variant affects thrombus cross-linking in a murine model of thrombosis. Arterioscler Thromb Vasc Biol. 2016;36(2):308–316. doi: 10.1161/ATVBAHA.115.306695
  39. Gemmati D, Federici F, Campo G, et al. Factor XIIIA-V34L and factor XIIIB-H95R gene variants: effects on survival in myocardial infarction patients. Mol Med. 2007;13(1–2):112–120. doi: 10.2119/2006-00049.Gemmati.
  40. Frey A, Gassenmaier T, Hofmann U, et al. Coagulation factor XIII activity predicts left ventricular remodelling after acute myocardial infarction. ESC Heart Fail. 2020;7(5):2354–2364. doi: 10.1002/ehf2.12774
  41. Khatami M, Heidari MM, Soheilyfar S. Common rs5918 (PlA1/A2) polymorphism in the ITGB3 gene and risk of coronary artery disease. Arch Med Sci Atheroscler Dis. 2016;1(1):e9–e15. doi: 10.5114/amsad.2016.59587
  42. Sveklina TS, Shustov SB, Kolyubaeva SN, et al. Genetic markers of chronic heart disease in-sufficiency with a preserved ejection fraction. Modern Problems of Science and Education. 2021;(3):111.EDN: AKHNLQ doi: 10.17513/spno.30769
  43. Wang Z, Chen J, Song J, et al. Plasminogen activator inhibitor-1 4g/5g (rs1799889) polymorphism in chinese patients with diabetes mellitus and hypertension. Diabetes Metab Syndr Obes. 2023;16:1133–1147. doi: 10.2147/DMSO.S410682
  44. Guo M, Guo G, Ji X. Genetic polymorphisms associated with heart failure: A literature review. J Int Med Res. 2016;44(1):15–29. doi: 10.1177/0300060515604755
  45. Wang WZ. Association between T174M polymorphism in the angiotensinogen gene and risk of coronary artery disease: a meta-analysis. J Geriatr Cardiol. 2013;10(1):59–65. doi: 10.3969/j.issn.1671-5411.2013.01.010
  46. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/ deletion polymorphism in the angiotensin-I-converting en- zyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86:1343–1346. doi: 10.1172/JCI114844
  47. Niu T, Chen X, Xu X. Angiotensin converting enzyme gene insertion/deletion polymorphism and cardiovascular disease: therapeutic implications. Drugs. 2002;62(7):977–993. doi: 10.2165/00003495-200262070-00001
  48. Pilati M, Cicoira M, Zanolla L, et al. The role of angiotensin-converting enzyme polymorphism in congestive heart failure. Congest Heart Fail. 2004;10(2):87–95. doi: 10.1111/j.1527-5299.2004.01328.x
  49. Shlyakhto EV, Shwartz EI, Nefedova YB, et al. Lack of association of the renin-angiotensin system genes polymorphisms and left ventricular hypertrophy in hypertension. Blood Press. 2001;10(3): 135–141. doi: 10.1080/080370501753182343
  50. El-Arif G, Khazaal S, Farhat A, et al. Angiotensin II type I receptor (AT1R): The gate towards COVID-19-associated diseases. Molecules. 2022;27(7):2048. doi: 10.3390/molecules27072048
  51. Robbins JM, Peterson B, Schranner D, et al. Human plasma proteomic profiles indicative of cardiorespiratory fitness. Nat Metab. 2021;3(6):786–797. doi: 10.1038/s42255-021-00400-z
  52. Hanff TC, Cohen JB, Zhao L, et al. Quantitative proteomic analysis of diabetes mellitus in heart failure with preserved ejection fraction. JACC Basic Transl Sci. 2021;6(2):89–99. doi: 10.1016/j.jacbts.2020.11.011
  53. Jacob J, Ngo D, Finkel N, et al. Application of large-scale aptamer-based proteomic profiling to planned myocardial infarctions. Circulation. 2018;137(12):1270–1277. doi: 10.1161/CIRCULATIONAHA.117.029443
  54. Collier P, Watson CJ, Voon V, et al. Can emerging biomarkers of myocardial remodelling identify asymptomatic hypertensive patients at risk for diastolic dysfunction and diastolic heart failure? Eur J Heart Fail. 2011;13(10):1087–1095. doi: 10.1093/eurjhf/hfr079
  55. Batyushin MM, Vrublevskaya SN, Sarvilina IV. Opportunities proteomic the analysis of fibers of urine for an estimation of progressing of a chronic heart failure. Medical Herald of the South of Russia. 2011;(1):33–38. EDN: NCOQMC

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies