The stimulating effects of exometabolites of microalgae chlorella vulgaris on the lactic acid bacteria bacillus coagulans

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This study aimed to determine the stimulating effect of exometabolites of microalgae Chlorella Vulgaris IPPAS C-2 — indole compounds that are cultured on wastewater model solution. The purification process of a model wastewater solution with Chlorella Vulgaris microalgae obtained biomass of microalgae with a high lipid content (up to 50%), whereas the residual concentrations of pollutants in the solution were ammonium cations of 1.5 mg/l and phosphate anions of 3.5 mg/l. The residual concentration of microorganisms in the purified model sample of wastewater does not exceed 0.3 million CFU/ml. Growth factors of indole nature, which are external metabolites of microalgae, were also found in the solution. Purified effluents were used in the microbiological synthesis of lactic acid to confirm the stimulating effect of accumulated metabolites. The control sample was a nutrient medium based on malt germ extract. The glucose concentration in all samples is the same and is 140 g/l. A strain of lactic acid bacteria Bacillus coagulans B-10468 was used as a test culture. The highest concentration of lactic acid bacteria (100 million cells/ml) was observed in a sample containing microalgae metabolites. This concentration is 1.7 times higher than in the control sample. In the future, the growth rate of Bacillus coagulans cells slowed down since the concentration of lactic acid reached the limit values of 30–50 g/l on the 3rd day, which contributed to the bacterial cell growth inhibition. The use of a growth stimulator based on treated wastewater by microalgae in the cultivation of bacteria of the species Bacillus coagulans B-10468 increases the specific rate of accumulation of bacterial biomass (0.27 day–1), which is 26% more than in the control sample; increases the yield of lactic acid (120 g/l) by 25% compared with the traditional stimulant — malt sprouts. The lactic acid production using growth stimulants from wastewater treatment with microalgae will reduce the cost of its production. The use of this technological solution will provide an opportunity to reduce the cost of polymer, polylactide, which is one of the main materials for additive technologies.

Full Text

Restricted Access

About the authors

Ilya V. Markin

Military Innovative Technopolis "ERA"

Author for correspondence.
Email: ilya.markin.92@bk.ru
SPIN-code: 6021-7645

head of research laboratory

Russian Federation, Anapa

Evgeny A. Zhurbin

Military Innovative Technopolis "ERA"

Email: zhurbin-90@mail.ru
ORCID iD: 0000-0002-0867-3838
SPIN-code: 8426-1354
Scopus Author ID: 57198886746

head of department

Russian Federation, Anapa

Pyotr K. Potapov

Military Innovative Technopolis "ERA"

Email: footballprospb@gmail.com
SPIN-code: 5979-4490

deputy head of department

Russian Federation, Anapa

Elena S. Shchelkanova

Military Innovative Technopolis "ERA"

Email: shchelkanova_el@mail.ru
ORCID iD: 0000-0003-0672-8820
SPIN-code: 8396-0602
Scopus Author ID: 35280517700

candidate of biological sciences

Russian Federation, Anapa

Alexander N. Molodchenko

Military Innovative Technopolis "ERA"

Email: era_8li@mail.ru

head of the laboratory

Russian Federation, Anapa

Nikita I. Stepanenko

Military Innovative Technopolis "ERA"

Email: ni-stepanenko@yandex.ru

senior operator

Russian Federation, Anapa

References

  1. Wang X, Jiang M, Zhou Z, et al. 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering. 2017;110:442–458. doi: 10.1016/j.compositesb.2016.11.034
  2. Rose L. On the degradation of porous stainless steel in low and intermediate temperature solid oxide fuel cell support materials [dissertation]. Vancouver: University of British Columbia; 2011. 307 p.
  3. Galante R, Figueiredo-Pina C, Serro A. Additive manufacturing of ceramics for dental applications: A review. Dental Materials. 2019;35(6):825–846. doi: 10.1016/j.dental.2019.02.026
  4. Ma K, Hu G, Pan L, et al. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans. Bioresourсe Technology. 2016;219:114–122. doi: 10.1016/j.biortech.2016.07.100
  5. Zhou J, Ouyang J, Xu Q, et al. Cost-effective simultaneous saccharification and fermentation of l -lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17. Bioresourсe Technology. 2016;222:431–438. doi: 10.1016/j.biortech.2016.09.119
  6. Bespomestnyh KV, Galstjan AG, Korotkaja EV. Issledovanie biohimicheskih i morfologicheskih svojstv shtammov bakterij roda Lactobacillus. Tehnika i tehnologija pishhevyh proizvodstv. 2011;3(2):94–98. (In Russ.).
  7. Dvoreckij DS, Temnov MS, Markin IV. Ocenka kompleksnogo ispol’zovanija stochnyh vod dlja biosinteza lipidov i molochnoj kisloty. Voprosy sovremennoj nauki i praktiki. 2017;(3):9–16. (In Russ.).
  8. Dvoreckij DS, Zjuzina OV, Markin IV, et al. Sovershenstvovanie uslovij biosinteza molochnoj kisloty laktobakterijami. Vestnik Kazanskogo tehnologicheskogo universiteta. 2017;8(8):126–130. (In Russ.).
  9. Markin IV, Santalov RD, Bushkovskaja AI, et al. Kul’tivirovanie mikrovodorosli Chlorella vulgaris na gorodskih stochnyh vodah. In: Vserossijskaja nauchno-prakticheskaja konferencija studentov, aspirantov i molodyh uchenyh s mezhdunarodnym uchastiem. Sep. 28–30, 2017.. (In Russ.).
  10. Baglieri A, Sidella S, Barone V, et al. Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water. Environmental Science and Pollution Research. 2016;23(18):18165–18174. doi: 10.1007/s11356-016-6996-3
  11. Amaro HM, Guedes AC, Malcata FX. Antimicrobial activities of microalgae: an invited review. In: Science against microbial pathogens: communicating current research and technological advances. 2011.
  12. Dvoreckij DS. Osnovy biojenergetiki [CD ROM]. Tambov: TGTU; 2018. (In Russ.).
  13. Gol’din EB, Gol’dina VG. Antibakterial’nye svojstva metabolitov vodoroslej v model’nyh jeksperimentah. Al’gologija. 1999;2:34. (In Russ.).
  14. Markin IV. Ispol’zovanie mikrovodorosli Chlorella vulgaris dlja ochistki stochnyh vod. In: Vserossijskij otkrytyj konkurs studentov vuzov i molodyh issledovatelej "Vzgljad molodyh na problemy regional’noj jekonomiki". Tambov. Oct. 16–17, 2017 (In Russ.). Available from: https://biblioclub.ru/index.php?page=book&id=499435&lang=ru
  15. Wang L, Chen X, Wang H, et al. Chlorella vulgaris cultivation in sludge extracts from 2,4,6-TCP wastewater treatment for toxicity removal and utilization. Journal of Environmental Management. 2017;187:146–153. doi: 10.1016/j.jenvman.2016.11.020
  16. Ghasemi Y. Antifungal and Antibacterial Activity of the Microalgae Collected from Paddy Fields of Iran: Characterization of Antimicrobial Activity of Chroococcus dispersus. Journal of Biological Sciences. 2007;7(6):904–910. doi: 10.3923/jbs.2007.904.910

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Biomass accumulation kinetics

Download (164KB)
3. Fig. 2. Lactic acid accumulation kinetics

Download (165KB)
4. Fig. 3. Carbon substrate loss kinetics

Download (165KB)

Copyright (c) 2021 Markin I.V., Zhurbin E.A., Potapov P.K., Shchelkanova E.S., Molodchenko A.N., Stepanenko N.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies