Effect of glyprolins on white blood cell parameters and phagocytic activity of neutrophils in conditions of experimental hyperthyroidism

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This study investigated the effects of glyproline neuropeptide compounds (selank and Pro-Gly-Pro) on the white blood cell count and phagocytic activity of neutrophils in 40 nonlinear white male rats aged 6–8 months with experimental hyperthyroidism. Experimental hyperthyroidism was simulated by intragastric administration of L-thyroxine sodium salt pentahydrate at a dose of 150 µg/kg/day for 21 days. All animals were equally divided into four groups: healthy rats (control), rats treated with L-thyroxine sodium pentahydrate (hyperthyroidism), rats treated with selank, and rats treated with Pro-Gly-Pro at doses of 200 µg/kg/day intraperitoneally for 21 days, starting one day after the last administration of L-thyroxine sodium pentahydrate. After the animals were removed from the experiment, the white blood cell count and the percentage of lymphocytes, stick, and segmentonuclear neutrophils were calculated, and the phagocytic activity of neutrophils was evaluated. In the case of experimental hyperthyroidism, neutrophilic leukocytosis with a shift to the right, lymphopenia, and decreased phagocytic activity of neutrophils were observed. Glyproline neuropeptides contributed to the correction of observed changes in white blood cell indices and phagocytic processes, which indicates the immunocorrigating effect of the test compounds. Thus, glyproline neuropeptides demonstrated pronounced immunotropic activity, which manifested in the correction of changes arising from the leukocyte count and phagocytosis processes. However, further detailed study of the pharmacological effects of neuropeptide agents on experimental hyperthyroidism is necessary.

Full Text

Restricted Access

About the authors

Mariyam U. Sergalieva

Astrakhan State Medical University

Author for correspondence.
Email: charlina_astr@mail.ru
ORCID iD: 0000-0002-9630-2913
SPIN-code: 7976-9321

candidate of biological sciences

Russian Federation, Astrakhan

Alexandra A. Tsybizova

Astrakhan State Medical University

Email: sasha3633@yandex.ru
ORCID iD: 0000-0002-9994-4751
SPIN-code: 2206-3898
Scopus Author ID: 57170924200

candidate of pharmaceutical sciences

Russian Federation, Astrakhan

Lyudmila A. Andreeva

Kurchatov Institute — Institute of Molecular Genetics

Email: landr@img.ras.ru
ORCID iD: 0000-0002-3927-8590
SPIN-code: 4785-5621
Scopus Author ID: 7102725159

head of the sector

Russian Federation, Moscow

Nikolay F. Myasoedov

Kurchatov Institute — Institute of Molecular Genetics

Email: nfm@img.ras.ru
ORCID iD: 0000-0003-1294-102X
SPIN-code: 1262-2698
Scopus Author ID: 7005093383

doctor of chemical sciences, professor

Russian Federation, Moscow

Olga A. Bashkina

Astrakhan State Medical University

Email: bashkina1@mail.ru
ORCID iD: 0000-0003-4168-4851
SPIN-code: 3620-0724
Scopus Author ID: 6503961642

doctor of medical sciences, professor

Russian Federation, Astrakhan

Marina A. Samotrueva

Astrakhan State Medical University

Email: ms1506@mail.ru
ORCID iD: 0000-0001-5336-4455
SPIN-code: 5918-1341
Scopus Author ID: 8221221300

doctor of medical sciences, professor

Russian Federation, Astrakhan

References

  1. Taylor PN, Albrecht D, Scholz A, et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018;14(5):301–316. doi: 10.1038/nrendo.2018.18
  2. Doubleday AR, Sippel RS. Hyperthyroidism. Gland Surg. 2020;9(1):124–135. doi: 10.21037/gs.2019.11.01
  3. Lane LC, Cheetham TD, Perros P, Pearce SHS. New Therapeutic Horizons for Graves’ Hyperthyroidism. Endocr Rev. 2020;41(6): 873–884. doi: 10.1210/endrev/bnaa022
  4. Rivas AM, Pena C, Kopel J, et al. Hypertension and Hyperthyroidism: Association and Pathogenesis. Am J Med Sci. 2021;361(1):3–7. doi: 10.1016/j.amjms.2020.08.012
  5. Tsai K, Leung AM. Subclinical Hyperthyroidism: A Review of the Clinical Literature. Endocr Pract. 2021;27(3):254–260. doi: 10.1016/j.eprac.2021.02.002
  6. Noda M. Thyroid Hormone in the CNS: Contribution of Neuron-Glia Interaction. Vitam Horm. 2018;106:313–331. doi: 10.1016/bs.vh.2017.05.005
  7. Chenchak VA. Features of the action of thyroxin on the immune system. 2017;(3):38–38. (In Russ.).
  8. Zenkov AL. O vliyanii tiroksina na immunokompetentnye kletki. International Conference on Chemical, Biological and Health Sciences. Pisa, 2017. P. 117–128. (In Russ.).
  9. Carr R, Frings S. Neuropeptides in sensory signal processing. Cell and Tissue Res. 2019;375(1):217–225. doi: 10.1007/s00441-018-2946-3
  10. Yasenyavskaya AL, Samotrueva MA, Myasoedov NF, Andreeva LA. Influence of semax on the level of interleukin-1βin the conditions of “social” stress. Medical academic journal. 2019;9(1S): 192–194. (In Russ.). doi: 10.17816/MAJ191S1192-194
  11. Vyunova TV, Andreeva LA, Shevchenko KV, Myasoedov NF. An integrated approach to study the molecular aspects of regulatory peptides biological mechanism. J Label Compd Radiopharm. 2019;62(12):812–822. doi: 10.1002/jlcr.3785
  12. Thiele TE. Neuropeptides and Addiction: An Introduction International. Rev Neurobiol. 2017;136:1–3. doi: 10.1016/bs.irn.2017.07.001
  13. Sergalieva MU, Tsibizova AA, Abdulkadyrova EI. The effect of selank and pro-gly-proon behavioral responses white rats in the Porsolt test in the conditions of experimental hyperthyroidism. Astrakhan medical journal. 2021;16(2):53–61. (In Russ.). doi: 10.17021/2021.16.2.53.61
  14. Shcherba VV, Korda MM. The state of the nitrogen (II) oxidesystem in rats with periodontitis on the background of hyper- and hypothyroidism. Medical and Clinical Chemistry. 2018;2(1):143. (In Ukraine). doi: 10.11603/mcch.2410-681X.2018.v0.i1.8844

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of neuropeptide compounds on the total leukocyte count in experimental hyperthyroidism

Download (187KB)
3. Fig. 2. Effect of neuropeptide compounds on the percentage of leukocyte classes in experimental hyperthyroidism

Download (192KB)
4. Fig. 3. Effect of neuropeptide compounds on the phagocytic activity of neutrophils in experimental hyperthyroidism

Download (182KB)

Copyright (c) 2022 Sergalieva M.U., Tsybizova A.A., Andreeva L.A., Myasoedov N.F., Bashkina O.A., Samotrueva M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies