Cardiovascular complications in patients after coronavirus DISEASE-2019

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The data of the modern literature describing the long-term consequences of infection of the body with SARS-CoV-2 on the cardiovascular system in the framework of postcovid syndrome are analyzed. To date, postcovid syndrome refers to a condition in which symptoms continue to persist for more than 12 weeks from the moment of diagnosis of COVID-19. Various complaints of patients after undergoing a new coronavirus infection are described, the distinguishing feature of which is their versatility, where cardiovascular manifestations are assigned one of the leading roles. Postural orthostatic tachycardia syndrome, cardiac arrhythmia and conduction disorders are considered. The role of SARS-CoV-2 in the formation of de novo and decompensation of pre-existing cardiovascular diseases has been demonstrated. The possibility of developing heart failure in patients with COVID-19 as an outcome of inflammation of the heart muscle is shown. Particular attention is paid to the analysis of the incidence of myocarditis after 3 months or more from the diagnosis of COVID-19, as well as thrombotic complications, in the genesis of which the main role belongs to the formation of endothelial dysfunction resulting from the interaction of SARS-CoV-2 with vascular endothelial cells. The autoimmune component of the pathogenesis of damage to the cardiovascular system as a result of the formation of endothelial dysfunction in COVID-19 is also considered. The authors present a laboratory-instrumental algorithm for determining cardiovascular complications in people who have undergone COVID-19, including the determination of the N-terminal fragment of the brain natriuretic peptide B-type prohormone, the level of anticardial antibodies, electrocardiography, echocardiography, as well as magnetic resonance imaging of the heart with contrast.

Full Text

Restricted Access

About the authors

Nikita T. Mirzoev

Military medical academy of S.M. Kirov

ORCID iD: 0000-0002-9232-6459
SPIN-code: 9826-5624


Russian Federation, Saint Petersburg

Gennady G. Kutelev

Military medical academy of S.M. Kirov

ORCID iD: 0000-0002-6489-9938
SPIN-code: 5139-8511

candidate of medical sciences
Russian Federation, Saint Petersburg

Maxim I. Pugachev

Military medical academy of S.M. Kirov

Author for correspondence.
ORCID iD: 0000-0001-5523-8233
SPIN-code: 1549-6552

candidate of medical sciences

Russian Federation, Saint Petersburg

Elena B. Kireeva

Military medical academy of S.M. Kirov

SPIN-code: 8954-1927

candidate of medical sciences

Russian Federation, Saint Petersburg


  1. Zheng C, Shao W, Chen X, et al. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. Int J Infect Dis. 2022;114:252–260. doi: 10.1016/j.ijid.2021.11.009l
  2. Carfì A, Bernabei R, Landi F. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020;324(6):603–605. doi: 10.1001/jama.2020.12603
  3. Carvalho-Schneider C, Laurent E, Lemaignen A, et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect. 2021;27(2):258–263. doi: 10.1016/j.cmi.2020.09.052
  4. Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397(10270):220–232. doi: 10.1016/S0140-6736(20)32656-8
  5. Carod-Artal F. Post-COVID-19 syndrome: epidemiology, diagnostic criteria and pathogenic mechanisms involved. Revista de neurologia. 2021;72(11):384–396. doi: 10.33588/rn.7211.2021230
  6. Romero-Duarte А, Rivera-Izquierdo M, Guerrero-Fernández I. Sequelae, persistent symptomatology and outcomes after COVID-19 hospitalization: the ANCOHVID multicentre 6-month follow-up study. BMC Medicine. 2021;19:129. doi: 10.1186/s12916-021-02003-7
  7. Oronsky B, Larson C, Hammond T, et al. A Review of Persistent Post-COVID Syndrome (PPCS). Clin Rev Allergy Immunol. 2021. doi: 10.1007/s12016-021-08848-3
  8. Evans P, Rainger G, Mason J, et al. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res. 2020;116(14):2177–2184. doi: 10.1093/cvr/cvaa230
  9. Zadourian A, Doherty T, Swiatkiewicz I, Taub PR. Postural orthostatic tachycardia syndrome: prevalence, pathophysiology, and management. Drugs. 2018;78(10):983–994. doi: 10.1007/s40265-018-0931-5
  10. Duplyakov DV, Gorbacheva OV, Golovina GA. Postural orthostatic tachycardia syndrome. Journal of Arrhythmology. 2011;(66):50–55. (In Russ.).
  11. O'Sullivan J, Lyne A, Vaughan C. COVID-19-induced postural orthostatic tachycardia syndrome treated with ivabradine. BMJ case reports. 2021;14(6):52–57. doi: 10.1136/bcr-2021-243585
  12. Abdulla A, Rajeevan T. Reversible postural orthostatic tachycardia syndrome. World J Clin Cases. 2015;3(7):655–660. doi: 10.12998/wjcc.v3.i7.655
  13. Dani M, Dirksen A, Taraborrelli P, et al. Autonomic dysfunction in long COVID: rationale, physiology and management strategies. Clin Med. 2021;21(1):65–71. doi: 10.7861/clinmed.2020-0896
  14. Puccioni-Sohler M, Rodrigues Poton A, Franklin M, et al. Current evidence of neurological features, diagnosis, and neuropathogenesis associated with COVID-19. Rev Soc Bras Med Trop. 2020:53. doi: 10.1590/0037-8682-0477-2020
  15. Goldstein D. The possible association between COVID-19 and postural tachycardia syndrome. Heart Rhythm. 2021;18(4):508–509. doi: 10.1016/j.hrthm.2020.12.007
  16. Blitshtey S, Whitelaw S. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. Immunol Res. 2021;69: 205–201. doi: 10.1007/s12026-021-09185-5
  17. Mitrani R, Dabas N, Goldberger J. COVID-19 cardiac injury: Implications for long-term surveillance and outcomes in survivors. Heart Rhythm. 2020;17(11):1984–1990. doi: 10.1016/j.hrthm.2020.06.026
  18. Inciardi R, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA cardiology. 2020;5(7):819–824. doi: 10.1001/jamacardio.2020.1096
  19. Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA cardiology. 2020;5(7):811–817. doi: 10.1001/jamacardio.2020.1017
  20. Fisun AY, Lobzin YV, Cherkashin DV, et al. Mechanisms of Damage to the Cardiovascular System in COVID-19. Annals of the Russian Academy of Medical Sciences. 2021;76(3):287–297. (In Russ.). doi: 10.15690/vramn1474
  21. Kryukov EV, Shulenin KS, Cherkashin DV, et al. Patogenez i klinicheskie proyavleniya porazheniya serdechno-sosudistoi sistemy u patsientov s novoi koronavirusnoi infektsiei (COVID-19). Saint Petersburg: Veda Print; 2021. (In Russ.).
  22. Samidurai A, Das A. Cardiovascular complications associated with COVID-19 and potential therapeutic strategies. Int J Mol Sci. 2020;21(18):6790. doi: 10.3390/ijms21186790
  23. Kim J, Han K, Suh Y. Prevalence of abnormal cardiovascular magnetic resonance findings in recovered patients from COVID-19: a systematic review and meta-analysis. J Cardiovasc Magn Reson. 2021;23:100. doi: 10.1186/s12968-021-00792-7
  24. Hassani N, Talakoob H, Karim H, et al. Cardiac Magnetic Resonance Imaging Findings in 2954 COVID-19 Adult Survivors: A Comprehensive Systematic Review. J Magn Reson Imaging. 2021;55(3):866–880. doi: 10.1002/jmri.27852
  25. Puntmann V, Carerj M, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiology. 2020;5(11):1265–1273. doi: 10.1001/jamacardio.2020.3557
  26. Huang L, Zhao P, Tang D, et al. Cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. JACC Cardiovasc Imaging. 2020;13(11):2330–2339. doi: 10.1016/j.jcmg.2020.05.004
  27. Luetkens J, Doerner J, Thomas D, et al. Acute myocarditis: multiparametric cardiac MR imaging. Radiology. 2014;273(2): 383–392. doi: 10.1148/radiol.14132540
  28. Chaikriangkrai K, Abbasi M, Sarnari R, et al. Prognostic value of myocardial extracellular volume fraction and T2-mapping in heart transplant patients. JACC Cardiovasc Imaging. 2020;13(7):1521–1530. doi: 10.1016/j.jcmg.2020.01.014
  29. Joy G, Artico J, Kurdi H, et al. Prospective Case-Control Study of Cardiovascular Abnormalities 6 Months Following Mild COVID-19 in Healthcare Workers. JACC Cardiovasc Imaging. 2021;14(11): 2155–2166. doi: 10.1016/j.jcmg.2021.04.011
  30. Biernacka A, Frangogiannis N. Aging and Cardiac Fibrosis. Aging and Disease. 2011;2(2):158–173.
  31. Tan W, Aboulhosn J. The cardiovascular burden of coronavirus disease 2019 (COVID-19) with a focus on congenital heart disease. Int J Cardiol. 2020;15(309):70–77. doi: 10.1016/j.ijcard.2020.03.063
  32. Gupta S, Mitra A. Challenge of post-COVID era: management of cardiovascular complications in asymptomatic carriers of SARS-CoV-2. Heart Fail Rev. 2021;27:239–249. doi: 10.1007/s10741-021-10076-y
  33. Yu C-M, Wong RS-M, Wu EB, et al. Cardiovascular complications of severe acute respiratory syndrome. Postgrad Med J. 2006;82(964):140–144. doi: 10.1136/pgmj.2005.037515
  34. Getman SI, Chepel AI, Tegza VYu. Diagnosis of myocarditis in the context of the COVID-19 pandemic. International Research Journal. 2021;(9-2):18–23. (In Russ.). doi: 10.23670/IRJ.2021.9.111.037
  35. Chistyakova MV, Zaitsev DN, Govorin AV, et al. Post-COVID-19 syndrome: morpho-functional abnormalities of the heart and arrhythmias. Russian Journal of Cardiology. 2021;26(7):32–39. (In Russ.). doi: 10.15829/1560-4071-2021-4485
  36. Chaudhary R, Bliden K, Kreutz R, et al. Race-Related disparities in COVID-19 thrombotic outcomes: Beyond social and economic explanations. EClinicalMedicine. 2020;29:100647. doi: 10.1016/j.eclinm.2020.100647
  37. Wang M, Hao H, Leeper N, et al. Thrombotic regulation from the endothelial cell perspectives. Arterioscler Thromb Vasc Biol. 2018;38(6):90–95. doi: 10.1161/ATVBAHA.118.310367
  38. Gómez-Moreno D, Adrover J, Hidalgo A. Neutrophils as effectors of vascular inflammation. Eur J Clin Invest. 2018;48(S2):e12940. doi: 10.1111/eci.12940
  39. Zuin M, Rigatelli G, Zuliani G, Loncon R. The risk of thrombosis after acute-COVID-19 infection. QJM. 2021;114(9):619–620. doi: 10.1093/qjmed/hcab054
  40. Rashidi F, Barco S, Kamangar F, et al. Incidence of symptomatic venous thromboembolism following hospitalization for coronavirus disease 2019: prospective results from a multi-center study. Thromb Res. 2021;198:135–138. doi: 10.1016/j.thromres.2020.12.001
  41. Vlachou M, Drebes A, Candilio L, et al. Pulmonary thrombosis in Covid-19: before, during and after hospital admission. J Thromb Thrombolysis. 2021;51:978–984. doi: 10.1007/s11239-020-02370-7
  42. Roberts L, Whyte M, Georgiou L, et al. Postdischarge venous thromboembolism following hospital admission with COVID-19. Blood. 2020;136(11):1347–1350. doi: 10.1182/blood.2020008086
  43. Patell R, Bogue T, Koshy A, et al. Postdischarge thrombosis and hemorrhage in patients with COVID-19. Blood. 2020;136(11): 1342–1346. doi: 10.1182/blood.2020007938
  44. Li P, Zhao W, Kaatz S, et al. Factors associated with risk of postdischarge thrombosis in patients with COVID-19. JAMA Network Open. 2021;2(11):e2135397. doi: 10.1001/jamanetworkopen.2021.35397

Supplementary files

Supplementary Files
1. Fig. 1. Stages and criteria for the selection of studies, systematic reviews, and clinical cases

Download (234KB)
2. Fig. 2. Autoimmune component of cardiovascular pathogenesis resulting from endothelial dysfunction at COVID-19

Download (277KB)

Copyright (c) 2022 Mirzoev N.T., Kutelev G.G., Pugachev M.I., Kireeva E.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies