人脐带组织无细胞基质和水凝胶冻干物的抑菌作用

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

对来自人类脐带的基质和水凝胶的抑菌作用进行了研究。众所周知,以胚胎外器官(包括人类脐带)的细胞外基质为基础的生物仿生学很有希望满足再生医学和组织工程学的需求。 来自不同人体器官和组织的细胞外基质的无细胞产物对有意的细菌感染具有抵抗力。研究人员采用不同的方法对人脐带进行脱细胞处理,制成了两种无细胞基质,并对基于这两种基质的两种水凝胶的抑菌特性进行了评估。介绍了脐带水凝胶冻干物的两种临床应用。使用生化分析技术研究了人脐带无细胞基质和水凝胶的成分。利用培养技术评估了 Staphylococcus aureus 和 Escherichia coli 对脐带基质和水凝胶的敏感性,同时还研究了细菌的代谢活 动。需要注意的是,来自人类脐带的无细胞基质和水凝胶由胶原蛋白组成,并含有蛋白质和糖胺聚糖。在培养的最初 16 小时内,无论使用哪种洗涤剂制备水凝胶,都能发现水凝胶对 Escherichia coli 有可靠的抑菌作用。基质没有抑菌作用,这表明是结构成分的水解促进了具有抑菌活性的物质的释放。这种影响可能是由于对微生物代谢活动水平的影响。使用人脐带水凝胶冻干粉作为自体皮移植的添加剂,治疗两名志愿者的深部感染伤口,促进了伤口愈合,且未发生感染。一般来说,使用无细胞人类脐带水凝胶冻干物作为额外治疗,可以确保皮肤自体移植的接合,并为容易感染的大面积深层伤口的愈合创造条件。

作者简介

Albina A. Kondratenko

Kirov Military Medical Academy; State Pediatric Medical University

编辑信件的主要联系方式.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-8511-5864
SPIN 代码: 1668-3497

Cand. Sci. (Biol.)

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Vladimir E. Chernov

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-2440-3782
SPIN 代码: 8315-1161

Cand. Sci. (Biol.)

俄罗斯联邦, Saint Petersburg

Dmitry V. Tovpeko

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-0286-3056
SPIN 代码: 3698-4656

junior researcher

俄罗斯联邦, Saint Petersburg

Daniil A. Volov

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-1493-7622
SPIN 代码: 1797-6654

traumatologist

俄罗斯联邦, Saint Petersburg

Nikolay V. Beliy

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-9370-8678
SPIN 代码: 8676-3186

junior researcher

俄罗斯联邦, Saint Petersburg

Dmitry A. Zemlyanoy

State Pediatric Medical University

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-4716-809X
SPIN 代码: 3871-7531

MD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Lidiya I. Kalyuzhnaya

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-6698-4872
SPIN 代码: 1348-3306

MD, Dr. Sci. (Med.), assistant professor

俄罗斯联邦, Saint Petersburg

参考

  1. Basok YB, Kondratenko AA, Kalyuzhnaya LI, et al. Decellularized umbilical cord stroma in tissue engineering and regenerative medicine: a systematic review. Bulletin of transplantology and artificial organs. 2023;25(2):82–98. (In Russ.) EDN: NBDKJU doi: 10.15825/1995-1191-2023-2-82-98
  2. Dubus M, Scomazzon L, Chevrier J, et al. Antibacterial and immunomodulatory properties of acellular Wharton’s Jelly matrix. Biomedicines. 2022;10(2):227. doi: 10.3390/biomedicines10020227
  3. Dubus M, Scomazzon L, Chevrier J, et al. Decellularization of Wharton’s jelly increases its bioactivity and antibacterial properties. Front Bioeng Biotechnol. 2022;10:828424. doi: 10.3389/fbioe.2022.828424
  4. Ramzan F, Ekram S, Frazier T, et al. Decellularized human umbilical tissue derived hydrogels promote proliferation and chondrogenic differentiation of mesenchymal stem cells. Bioengineering. 2022;9(6):239. doi: 10.3390/bioengineering9060239
  5. Gupta A, El-Amin SF, Levy HJ, et al. Umbilical cord-derived Wharton’s jelly for regenerative medicine applications. J Orthop Surg Res. 2020;15(1):49. doi: 10.1186/s13018-020-1553-7
  6. Ramuta TŽ, Tratnjek L, Janev A, et al. The antibacterial activity of human amniotic membrane against multidrug-resistant bacteria associated with urinary tract infections: new insights from normal and cancerous urothelial models. Biomedicines. 2021;9(2):218. doi: 10.3390/biomedicines9020218
  7. Yadav MK, Go YY, Kim SH, et al. Antimicrobial and antibiofilm effects of human amniotic/chorionic membrane extract on Streptococcus pneumonia. Front Microbiol. 2017;8:1948. doi: 10.3389/fmicb.2017.01948
  8. Mao Y, Singh-Varma A, Hoffman T, et al. The effect of cryopreserved human placental tissues on biofilm formation of wound-associated pathogens. J Funct Biomater. 2018;9(1):3. doi: 10.3390/jfb9010003
  9. Brennan EP, Reing J, Chew D, et al. Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Eng. 2006;12(10):2949–2955. doi: 10.1089/ten.2006.12.2949
  10. Sarikaya A, Record R, Wu CC, et al. Antimicrobial activity associated with extracellular matrices. Tissue Eng. 2002;8(1):63–71. doi: 10.1089/107632702753503063
  11. Silini AR, Ramuta TŽ, Pires AS, et al. Methods and criteria for validating the multimodal functions of perinatal derivatives when used in oncological and antimicrobial applications. Front Bioeng Biotechnol. 2022;10:958669. doi: 10.3389/fbioe.2022.958669
  12. Tovpeko DV, Kondratenko AA, Kalyuzhnaya LI, et al. Biotechnological cell-free non-immunogenic product preserves the main regenerative structural components of the human umbilical cord. Biotechnology. 2023;39(1):49–59. (In Russ.) EDN: PVPMQO doi: 10.56304/S0234275823010118
  13. Capella-Monsonis H, Coentro J, Graceffa V, et al. An experimental toolbox for characterization of mammalian collagen type I in biological specimens. Nat Prot. 2018;13(3):507–529. doi: 10.1038/nprot.2017.117
  14. Wang C, Li G, Cui K, et al. Sulfated glycosaminoglycans in decellularized placenta matrix as critical regulators for cutaneous wound healing. Acta Biomater. 2021;22:199–210. doi: 10.1016/j.actbio.2020.12.055
  15. Ersanli C, Tzora A, Skoufos I, et al. Recent advances in collagen antimicrobial biomaterials for tissue engineering applications: a review. Int J Mol Sci. 2023;24(9):7808. doi: 10.3390/ijms24097808

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


##common.cookie##