State-of-the-Art and Development Trends of Inertial Navigation Systems Based on the Ring Laser Gyroscopes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article summarizes and analyzes information on the batch-produced high-end inertial navigation systems. The market dynamics for the high-end inertial systems and gyro pickups over the past 10 years are given. The dominance of inertial systems based on the ring laser gyroscopes for the mid-term and autonomous navigation is shown. The prevailing design and technological solutions of modern ring laser gyroscopes are considered. The similarity of foreign devices due to the optico-physical circuit is noted. The key developers of laser inertial systems are identified. A trend towards the reduced weight and dimensional specifications, decreased cost and energy consumption of the ring laser gyroscopes while maintaining the required accuracy and resistance to the external influences is shown.

Full Text

Restricted Access

About the authors

Anton O. Sinelnikov

State Research Institute of Instrument Engineering JSC; Peoples Friendship University of Russia (RUDN University)

Author for correspondence.
Email: photonics@technosphera.ru
ORCID iD: 0000-0002-5579-3509

Ph.D. in Technical Sciences, Head of the Laboratory, Associate Professor of the Department of Nanotechnology and Microsystem Engineering

Russian Federation, Moscow; Moscow

Nikolay V. Tikhmenev

State Research Institute of Instrument Engineering JSC

Email: photonics@technosphera.ru

Ph.D. in Physical and Mathematical Sciences, Head of the Department

Russian Federation, Moscow

Aleksander A. Ushanov

State Research Institute of Instrument Engineering JSC

Email: photonics@technosphera.ru
ORCID iD: 0009-0009-3703-9981

leading electronics engineer

Russian Federation, Moscow

Vladimir M. Medvedev

State Research Institute of Instrument Engineering JSC

Email: photonics@technosphera.ru

Doctor of Technical Sciences, Professor, Director General

Russian Federation, Moscow

References

  1. Peshekhonov V. G. The Outlook for Gyroscopy. Gyroscopy Navig. 2020;11:193–197. https://doi.org/10.1134/S2075108720030062. Пешехонов В. Г. Перспективы развития гироскопии. Гироскопия и навигация. 2020;28(2) (109):3–10. doi: 10.7463/0517.0001153.
  2. Loukianov D., Rodolff R., Sorg H, Stieler B. Optical Gyros and their Application (Gyroscopes Optiques et leurs Applications). RTO AGARDograph 339, 1999.
  3. Peshekhonov V. G. High-Precision Navigation Independently of Global Navigation Satellite Systems Data. Gyroscopy Navig. 2022;13:1–6. https://doi.org/10.1134/S2075108722010059. Пешехонов В. Г. Высокоточная навигация без использования информации глобальных навигационных спутниковых систем. Гироскопия и навигация. 2022; 30 № 1 (116): 3–11. doi: 10.17285/0869-7035.0084.
  4. Chopra K. N. Optoelectronic Gyroscopes. Progress in Optical Science and Photonics. Springer. Singapore. 2021; 11. https://doi.org/10.1007/978-981-15-8380-3.
  5. Zhenfang Fan, Baolun Yuan, Hui Luo, Zhongqi Tan, Suyong Wu, and Shaomin Hu. Random walk reduction in dithered ring laser gyroscope. Opt. Express. 2023;31: 7959–37967. https://doi.org/10.1364/OE.500916.
  6. Robin L., Perlmutter M. Gyroscopes and IMUs for Defence Aerospace and Industrial. Report by Yole Development. 2012.
  7. Troadec C., Girardin G., Perlmutter M. High-End Inertial Sensors for Defense, Aerospace & Industrial. Market and Technology. Report by Yole Development. 2015.
  8. Damianos D., Girardin G. High-End Inertial Sensors for Defense, Aerospace & Industrial Applications. Market and Technology Report by Yole Development. 2020.
  9. Damianos D. High-End Inertial Sensors. Market and Technology Product Brochure by Yole Development. 2022.
  10. Global Inertial navigation systems (INS) market (2023–2028). Report by Mordor Intelligence. 2023. http://www.mordorintelligence.com.
  11. Ring Laser Gyroscope Market Report: Trends, Forecast and Competitive Analysis to 2030. 2024. https://www.researchandmarkets.com/reports/5928625/ring-laser-gyroscope-market-report-trends#rela4–5030627.
  12. Choi W. S., Shim K. M., Kim C. J., Park B. Y. Effective Frequency Lock-In Changes of a Ring Laser Gyroscope Due to Harmonic Components of Dithering Signal. IEEE Sensors Letters. 2023; 7(5): 1–4., May 2023. Art no. 1500504, doi: 10.1109/LSENS.2023.3267886.MINS 2. Marine Inertial Navigation System. Raytheon Anschütz Gmb H. www.raytheon-anschuetz.com.
  13. Northrop Grumman Delivers 8,000th LN-100 Inertial Navigation System. Photo Release. 2013. http://media.globenewswire.com/noc/mediagallery.html?pkgid=18902.
  14. Tazartes D. An historical perspective on inertial navigation systems. 2014 International Symposium on Inertial Sensors and Systems (INERTIAL). Laguna Beach. CA. USA. 2014; 1–5. doi: 10.1109/ISISS.2014.6782505.
  15. Sinelnikov A. O., Tikhmenev N. V., Ushanov A. A., Nazarov S. I. Interaction of the Dither of a Ring Laser Gyroscope with an External Mechanical Disturbance. IEEE Xplore. 2023;1–4. doi: 10.23919/ICINS51816.2023.10168376.
  16. Kuznetsov E., Golyaev Yu., Kolbas Yu., Kofanov Yu., Kuznetsov N., Vinokurov Yu., Soloveva T. Thermal computer modeling of laser gyros at the design stage: a promising way to improve their quality and increase the economic efficiency of their development and production. Optical and Quantum Electronics. 2021; 53(10); 596: 1–15. doi: 10.1007/s11082-021-03253-8
  17. Sinelnikov A. O., Zubarev Y. A., Tereshenko D. A. Rapid Persistence Testing of Ring Laser Gyroscopes. 2023. 30th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). Saint Petersburg. Russian Federation. 2023: 1–3. doi: 10.23919/ICINS51816.2023.10168522.
  18. Naumov A. S., Sigaev V. N. Transparent Lithium-Aluminum-Silicate Glass-Ceramics (Overview). Glass Ceram 2024;80:491–499. https://doi.org/10.1007/s10717-024-00639-4. Наумов А. С., Сигаев В. Н. Прозрачные ситаллы на основе литиевоалюмосиликатной системы. Стекло и керамика. 2023; 96(11): 54–63. doi: 10.14489/glc.2023.11.pp.054-063.
  19. Sinelnikov A. O., Zapotylko N. R., Zubarev Y. A. et al. Aspects of Sitall SO-115M Use in the Fabrication of the Optical Components of He–Ne Ring Lasers. Glass Ceram, 2023. https://doi.org/10.1007/s10717-023-00579-5 Синельников А. О., Запотылько Н. Р., Зубарев Я. А., Катков А. А. Особенности применения ситалла СО-115М при изготовлении оптических деталей кольцевых He-Ne лазеров. Стекло и керамика. 2023;96(5)(1145): 3–13. doi: 10.14489/glc.2023.05.pp.003–013.
  20. Miniature Inertial Measurement Unit. Proven performer for satellite and deep-space-probe applications. 2021. Honeywell Aerospace. http://www.aerospace.honeywell.com.
  21. HG5700 Inertial Measurement Unit. 2021. Honeywell Aerospace. http://www.aerospace.honeywell.com.
  22. HG1700 Inertial Measurement Unit. 2022. Honeywell Aerospace. http://www.aerospace.honeywell.com.
  23. HG9900 Inertial Measurement Unit. 2018. Honeywell Aerospace. http://www.aerospace.honeywell.com.
  24. HG2170 Laseref™ Marine Inertial Navigation System. 2016. Honeywell Aerospace. http://www.aerospace.honeywell.com.
  25. LASEREF IV retrofit program. 2022. Honeywell Aerospace. http://www.aerospace.honeywell.com.
  26. DRU-H-R. Dynamic Reference Unit-Hybrid Replacement. Datasheet. 2024. EMCORE. http://www.emcore.com.
  27. PNU/UPNU- with Commercial GPS Receiver. Position and Navigation Unit/Universal Position and Navigation Unit. Datasheet. 2024. EMCORE. http://www.emcore.com.
  28. Inertial Measurement Units. KG-IMU-KIT. Datasheet. 2020. Kearfott. www.kearfott.com.
  29. Sokolov A. V., Tarasovskij D. O., YAshnikova O. M. Analiz opyta kompanii Safran v oblasti tochnogo priborostroeniya. Morskoe oborudovanie i tekhnologii. 2023; 1(34):98–113. Соколов А. В., Тарасовский Д. О., Яшникова О. М. Анализ опыта компании Safran в области точного приборостроения. Морское оборудование и технологии. 2023;1(34): 98–113.
  30. The European leader in aerospace navigation. Setting the global standard for 70 years. 2017. Safran Electronics & Defense. http://www.safran-electronics-defens.com.
  31. http://www.thalesgroup.com.
  32. http://www. iai.co.il.
  33. MINS 2 Marine Inertial Navigation System. http://www.raytheon-anschuetz.com.
  34. iPRENA-M-H Precision Inertial/GNSS/VMS based Navigation System. Technical Data. 2023. iMAR Navigation. http://www.imar-navigation.de.
  35. Istomina N. L., Karyakina L. V. Domestic Photonics Market. Photonics Russia. 2024. 18(3): 218–223. doi: 10.22184/1993-7296.Fros.2024.18.3.218.223.
  36. Liapidevskiy A. V., Zhmud V. A. The main research in foreign electronics and photonics. Automatics & Software Enginery. 2023; 2 (44): 100–150.
  37. Dell ‘Olio F., Natale T., Wang Y. C., Hung Y. J. Miniaturization of Interferometric Optical Gyroscopes: A Review in IEEE Sensors Journal. 2023;23(24): 29948–29968. 15 Dec.15, 2023. doi: 10.1109/JSEN.2023.3327217.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Evolution of the world market of inertial technologies from 2011 to 2019

Download (361KB)
3. Fig. 2. Global RLG market trends

Download (207KB)
4. Fig. 3. Distribution of gyroscopic sensors by the bias stability in 2011 (a) and 2019 (b)

Download (441KB)
5. Fig. 4. ZLG-type RLG with the magneto-optical bias (a) and LN-100 INS (b) by Northrop Grumman

Download (612KB)
6. Fig. 5. Dither devices and RLG housings with a cavity of 16–34 cm

Download (2MB)
7. Fig. 6. RLG GG-1308 (a), GG-1320 (b) and INS HG 1700, HG 5700, HG 9900 by Honeywell Corporation

Download (1MB)
8. Fig. 7. Positioning and guidance systems PNU/UPNU and DRU-H-R by EMCORE

Download (851KB)
9. Fig. 8. Small-sized IMU KI-4921 based on the monolithic RLG T24-B by Kearfott

Download (1MB)
10. Fig. 9. RLGs of GLC-16 (a), GLC-32 (b) types and INS of Sigma-95L (c), Sigma-95N (d) types by SAGEM

Download (1MB)
11. Fig. 10. Three-axial monolithic RLG PiXYZ-22 (a) and IMU TopAxyz (b) by Thales

Download (733KB)
12. Fig. 11. Triangular RLG (a) and IMU TRL-16m (b) by IAI

Download (1MB)
13. Fig. 12. Laser INSs Mins 3 by Raytheon (a) and iPRENA-M-H by iMAR (b)

Download (732KB)
14. Fig. 13. Demonstration samples of SNP products at the Photonics 2023 exhibition

Download (2MB)

Copyright (c) 2024 Sinelnikov A.O., Tikhmenev N.V., Ushanov A.A., Medvedev V.M.