Volume 21, Nº 3 (2020)

Capa

Edição completa

Section 1. Computer Science, Computer Engineering and Management

Mathematical model of reliability of information processing computer appliances for real-time control systems

Aab A., Galushin P., Popova A., Terskov V.

Resumo

One of the main characteristics of computer appliances for processing real-time information is reliability.

The reliability of software is understood as the property of this software to perform specified functions, maintaining its characteristics within the established limits under certain operating conditions.

Software reliability is determined by its reliability and recoverability.

Reliability of software is a property to maintain its performance when using it for processing information in the information system. The reliability of the software is estimated by the probability of its operation without failures under certain environmental conditions during a given observation period.

The development of real-time systems requires a large amount of resources for design and testing. One of the solutions to this problem is mathematical modeling of computer appliances. This allows more flexible design of real-time systems with the specified reliability, taking into account the limitations on price and development time, and also opens the possibility of more flexible optimization of computer appliances for real-time control systems.

To develop a mathematical model of the reliability of computer appliance for real-time systems, it is necessary to take into account the provision of a given level of reliability, with reasonable development costs.

There are many methods for improving software reliability, but the most promising and effective methods are redundancy, which is achieved using N-version programming.

To increase the reliability of the hardware of the computer appliance, it is also necessary to use redundancy and redundancy, which includes multiprocessor and provision of different buses and independent RAM.

This paper discusses existing approaches to improving the reliability of hardware and software, proposes a model of reliability of a computer appliance, which is understood as the product of the probability of failure-free operation of hardware and the probability of error-free operation of software.

In addition, new formulas are proposed for the steady state probabilities of the hardware states of a multiprocessor computer appliance with heterogeneous processors, which give the same result as the existing ones, but require fewer computations.

The paper concludes with a question about the possibility of optimizing the reliability of computer appliances based on the developed model, and indicates optimization methods that can be used to solve this problem.

Siberian Aerospace Journal. 2020;21(3):296-302
pages 296-302 views

Solving boundary value problems of equations of two-dimensional elasticity theory using conservation laws

Annin B., Senashov S., Gomonova O.

Resumo

The plane problem for elasticity equations is well studied. It can be explained by its importance for applications and by the fact that the equations can be reduced to the Cauchy-Riemann system. In spite of this importance, exact solutions that would describe the stress-strain state of bodies of finite dimensions are not numerous. Conservation laws for differential equations have been appeared more than a hundred years ago, but, as a rule, they were not used to solve specific problems, but were of purely academic interest. The situation changed with the development of the technique of construction of conservation laws for arbitrary systems of differential equations, and then with the use of conservation laws to solve boundary value problems of the theory of plasticity and elastic-plasticity. In this article, new conservation laws are constructed for the equations of the plane theory of elasticity in the stationary case. These laws form an infinite series, which is closely related to the elasticity equations solving. This fact made possible to reduce solving of boundary value problems, in terms of displacements, to the calculation of contour integrals along the boundary of a domain bounded by the studying elastic body. As it follows from the proposed technique, the studied area can be multiply connected, and the considered boundary can be piecewise-smooth.

Siberian Aerospace Journal. 2020;21(3):303-306
pages 303-306 views

Interpretation of ant algorithm for solving the problem of the technical impact program calendar planning

Lifar’ A.

Resumo

Many strategically important sectors of the domestic industry are at the stage of transition to an investment approach to asset management. One of these industries is hydropower, where the current maintenance planning system needs new methods to deliver more efficient results. In general, the planning system for the main equipment (technical impact system) maintenance and repair can be formulated as a scheduling problem. The ant algorithm is of great interest from the point of view of solving the scheduling technical impact problem. Based on the specifics of planning, implementation and factors affecting the maintenance process, a modification of the ant algorithm is proposed. The mathematical description is a methodology for calculating parameters, basic elements of the graph, optimization criteria and constraints. A preparatory stage was also introduced into the solution algorithm, which determines the initial state of the equipment at the vertex K0. The functional model of the technical impact planning process presented in the article can be used to develop a software package within the framework of an innovative approach to asset management for hydropower companies.

Siberian Aerospace Journal. 2020;21(3):307-313
pages 307-313 views

Optimization control actions for the electrolytic method of aluminium producton

Makeev A., Piskazhova T., Gofman P.

Resumo

The most common indicator of the aluminium production process managing efficiency is the cost of the metal production, but this concept includes a lot of components. First, this is the cost of raw materials and electricity in this region, as well as the labour cost per ton of products, consumption coefficients of raw materials and energy, capital costs for construction and repairs, waste disposal cost, environmental payments, etc. At the same time, there is no single functional of the process quality, depending on technological parameters, that is, the problem of complete and relatively strict mathematical process optimization as a whole is currently not solvable, not only because of its volume, but because of the lack of a complete efficiency model. In this study, particular efficiency criteria are considered, the improvement of which is aimed at the optimization model of control actions developed by the authors, which are selected based on the possible levers of the current automated process control system (APCS) for aluminium electrolysis. All tests were carried out on Virtual cell software without transfer to a real control object.

Siberian Aerospace Journal. 2020;21(3):314-322
pages 314-322 views

6-aperiodic words over the three-letter alphabet

Senashov V.

Resumo

The work is devoted to the study of sets of aperiodic words over a finite alphabet. A set of such words can be considered as some kind of finite formal language. W. Burnside raised the issue of local finiteness of periodic groups. The negative answer was given only sixty years later by E. S. Golod. Soon S. V. Aleshin, R. I. Hryhorczuk, V. I. Sushchanskii constructed more examples confirming the negative answer to Burnside's question. Finiteness of the free Burnside group of period n was established for periods two and three (W. Burnside), for period four (W. Burnside, I. N. Sanov), for period six (M. Hall). The infinity of such a group, for odd indicators exceeding 4381, is established in the work of P. S. Novikov and S. I. Adyan (1967), and for odd indicators exceeding 664 in the book by S. I. Adian (1975). A more intuitive version of the proof for odd n > 1010 was proposed by A. Yu. Olshansky (1989). In this article, we consider the set of 6-aperiodic words. In the monograph by S. I. Adyan (1975) it was shown the proof of S. E. Arshon (1937) theory that there are infinitely many three-aperiodic words of any length in the two-letter alphabet. In the book of A. Y. Olshansky (1989), a proof of the infinity of the set of six-aperiodic words is given and an estimate of the number of such words of any given length is obtained. Here we try to estimate the function of the number of six-aperiodic words of any given length in a three-letter alphabet. The results obtained can be useful for encoding information in space communication sessions.

Siberian Aerospace Journal. 2020;21(3):333-336
pages 333-336 views

Efficiency improving of emergency monitoring and forecasting based on the information system

Pozharkova I.

Resumo

The article is devoted to the automated information system modification to solve monitoring and forecasting problems of natural and man-made emergencies in order to increase the efficiency of its functioning, namely, to increase the execution speed of the main operations, to reduce the error probability. Monitoring and forecasting of emergencies are among the priorities in the field of population from emergencies protection, as the prevention and elimination of their consequences are carried out on the basis of these tasks. At the same time, the data collection speed, processing and analysis largely determine the efficiency of the obtained results. The existing system of monitoring and forecasting of natural and man-made emergencies, its functional model in IDEF0 notation, characteristic features, advantages and disadvantages are considered. The existing system can be improved by automating a number of tasks related to the processing, transmission and storage of large data amounts, including real time data, as well as the generation of consolidated reports on the results of monitoring and forecasting of various objects. The information architecture of the solution reviewed and the corresponding database model form the basis of the proposed solution. The IDEF0 model of emergency monitoring and forecasting has been introduced taking into account the proposed modification of the automated information system. The main operation execution time comparative analysis based on the initial and modified automated information system (AIS) using the existing hardware confirms the effectiveness of the proposed solution. Data exchange and generation automation of consolidated reports on multiple monitoring objects will simplify analysis of the obtained results and solutions development based on them aimed at prevention of natural and man-made emergencies, as well as elimination of their consequences.

Siberian Aerospace Journal. 2020;21(3):323-332
pages 323-332 views

Automated setting of regulators for automated process control systems in the SimInTech visual modeling system

Ustimenko V., Chubar A., Mikhailenko L.

Resumo

For successful technological process in automated control systems it is necessary to maintain technological parameters constantly at the required level, which is ensured by the use of automated process control systems (APCS). The classical solution of this problem is the application of control devices of various types, the choice of which directly depends on the system under consideration and the requirements to it. The leading position among the automatic control system regulators for the last decades belongs to the proportional-integral-differentiating (PID) regulator, which efficiency of application in the technological process is defined by the speed and accuracy of its work. These qualities directly depend on the correct setting of the regulator parameters. The synthesis of regulators requires using of modern computer-aided design systems. The article presents the method of automatic setting of PID-regulator of the dynamic system of high order with negative feedback on the example of automatic room temperature control system. The modern Russian environment of dynamic simulation of technical systems SimInTech applied at a number of nuclear, oil refining and aerospace enterprises is used as the environment for system model development, as well as the process of its analysis and optimization. The main components of the system and transfer functions of its elements are presented. The step-by-step description of the process of project construction from standard software blocks and submodels, interacting through a single database with the use of built-in programming language, is described. The use of the built-in block of SimInTech visual simulation environment optimization for automated search of PID-regulator parameters is described in details and illustrated. The advantages and disadvantages of this adjustment method revealed during the project implementation are listed.

Siberian Aerospace Journal. 2020;21(3):337-346
pages 337-346 views

Models and algorithms for automatic grouping of objects based on the k-means model

Shkaberina G., Kazakovtsev L., Li R.

Resumo

The paper is devoted to the study and development of new algorithms for automatic grouping of objects. The algorithms can improve the accuracy and stability of the result of solving practical problems, such as the problems of identifying homogeneous batches of industrial products. The paper examines the application of the k-means algorithm with the Euclidean, Manhattan, Mahalanobis distance measures for the problem of automatic grouping of objects with a large number of parameters. A new model is presented for solving problems of automatic grouping of industrial products based on the k-means model with the Mahalanobis distance measure. The model uses a training procedure by calculating the averaged estimate of the covariance matrix for the training sample (sample with pre-labeled data). A new algorithm for automatic grouping of objects based on an optimization model of k-means with the Mahalanobis distance measure and a weighted average covariance matrix calculated from a training sample is proposed. The algorithm allows reducing the proportion of errors (increasing the Rand index) when identifying homogeneous production batches of products based on the results of tests. A new approach to the development of genetic algorithms for the k-means problem with the use of a single greedy agglomerative heuristic procedure as the crossover operator and the mutation operator is presented. The computational experiment has shown that the new mutation procedure is fast and efficient in comparison with the original mutation of the genetic algorithm. The high rate of convergence of the objective function is shown. The use of this algorithm allows a statistically significant increase both in the accuracy of the result (improving the achieved value of the objective function within the framework of the chosen mathematical model for solving the problem of automatic grouping), and in its stability, in a fixed time, in comparison with the known algorithms of automatic grouping. The results show that the idea of including a new mutation operator in the genetic algorithm significantly improves the results of the simplest genetic algorithm for the k-means problem.

Siberian Aerospace Journal. 2020;21(3):347-354
pages 347-354 views

Section 2. Aviation and Space Technology

The influence of the method of fuel supply into the combustion chamber on the quality of mixing and on the carbon oxide formation

Baklanov A.

Resumo

The burning of fuel in the combustion chamber of a gas turbine engine (GTE) is accompanied by formation of toxic substances. The most dangerous among them are carbon oxides that have a detrimental effect on humans and environment. In this regard the article is solving the urgent problem of determining the optimal method of gaseous fuel supplying in GTE combustion chamber to ensure low carbon-oxide emissions.

The paper presents the design features of injectors that work with a separate supply of air and fuel. Natural gas is used as fuel. One of the considered injectors provides jet fuel supply by means of a perforated spray, and another one provides twisted fuel supply by means of a swirler built into the fuel channel. The main geometric parameters of the injectors are given as well, such as the size of the swirler, the number of blades, and the diameter of the output nozzle.

In this regard the quality of air-fuel mixture preparation in a swirl jet in the outlet of the burner with two types of injector is defined. It is found that the best quality of mixing is ensured by the injector with jet spray.

The design of a heat pipe simulator, in which the tested nozzle is placed, is considered. The design of a stand installation designed for testing injectors in a heat pipe simulator, as well as the modes under which these tests were carried out, are presented. The results were obtained in a heat pipe simulator with installed jet injectors and injectors with a swirling fuel jet. An analysis was conducted, which resulted in conclusions about the effectiveness of using jet injectors. According to the conducted research, the parameters of the injector with a swirling fuel jet are characterized by the presence of high values of CO levels in the combustion products, which is explained by the extremely low quality of mixing fuel with air and, consequently, low efficiency of fuel combustion. Jet fuel injection has low CO values, which indicates good quality of mixing fuel with air and high efficiency of a combustion process. As a result, we have received recommendations on setting the selected type of injectors in a full-size combustion chamber.

Siberian Aerospace Journal. 2020;21(3):356-363
pages 356-363 views

Heat transfer in the centrifugal force field for gas turbines elements

Zuev A., Arngold A., Khodenkova E.

Resumo

The study of heat transfer from combustion products (CP) to the impeller and the casing of gas turbines of liquid rocket engines (LRE) is an urgent task.

The solution of the flow problem, taking into account heat transfer, in rotational flows, in the flowing parts of the turbopump units (TPU) of the rocket engine, is carried out by the following methods: numerical methods; analytical approach, when solving the equations of dynamic and temperature boundary layers; as well as using empirical dependencies. The temperature parameter of the gaseous combustion products and, as a consequence, the heat exchange between the combustion products and the structural elements of the flow part, significantly affects the working and energy characteristics of the TPU LRE.

When designing gas turbines of LRE, it is necessary to take into account the presence of heat exchange processes, the working fluid temperature distribution and the structural element temperatures in the cavities of the TPU LRE (since energy losses and viscosity depend on the temperatures of the working fluid, and also determine the flow parameters). The temperature distribution in the structural elements determines the performance and reliability of the unit.

In the case of the use of cryogenic fuel components in the TPU LRE units the heating of the component leads to the implementation of cavitation modes and a drop in operating and energy characteristics. On the other hand, a lowered temperature of the working fluid leads to an increased viscosity of the components and, as a consequence, a decrease in the efficiency of the unit (especially when using gel-like components).

When studying heat transfer in the field of centrifugal forces for elements of rocket engine gas turbines it is necessary to obtain a joint solution of the equations of dynamic and temperature boundary layers in the boundary conditions of the flow parts.

This article offers a model of the distribution of dynamic and temperature boundary layers taking into account the convective component (for the case of a gaseous working fluid, i. e. Pr < 1), which is necessary for the analytical solution and determination of the heat transfer coefficient in the boundary conditions of the flow cavities of the LRE turbine. The energy equation has been analytically obtained for the boundary conditions of the temperature boundary layer, which allows integration over the surface of any shape, which is necessary in determining the thickness of the energy loss. Taking into account the integral relation, the heat transfer law of the turbulent boundary layer for the rotation cavities is written. The equations for determining the heat transfer coefficient in the form of the Stanton criterion for rectilinear uniform and rotational flows for cases of turbulent flow regimes were obtained analytically. The obtained equations for heat transfer coefficients are in good agreement with experimental data and dependences of other authors.

Siberian Aerospace Journal. 2020;21(3):364-376
pages 364-376 views

Flow dynamics in the radial-annular cavity of turbomachines

Kishkin A., Shevchenko Y.

Resumo

This paper considers the problem of modeling a rotational flow in the radial-annular cavity of turbo machines with fixed walls. This case corresponds to the boundary conditions of the supply channel for a radial centripetal turbine. In the presented model, the flow is conventionally divided into radial and circumferential movement. The radial component of the velocity is determined by the mass flow rate from the continuity equation, the circumferential component is formed by the tangential channel supply. The main equation in the integration is the equation of the change in the momentum for the flow in the form of the Euler equation. In the case of the circumferential component of the velocity, the angular momentum law is used, assuming the potentiality of the flow and the constancy of the angular momentum within the integration step. As a result of the transformations of the motion equations, differential equations for the radial, circumferential component of velocity and static pressure are obtained, which represent a certain system of three equations in three unknowns. The system of equations allows integration under known boundary conditions at the inlet; as a result of integration, it is possible to obtain the field of distributions of velocities and pressures along the radius of the radial-annular cavity. The results of the study can be used in modeling the circumferential and radial forces on the rotor (impeller) of turbo machines.

Siberian Aerospace Journal. 2020;21(3):377-381
pages 377-381 views

Development of the heat panel of the small space apparatus for navigation support

Kolga V., Yarkov I., Yarkova E.

Resumo

To clarify the trajectory of the spacecraft in a given orbit, the parameter of unmodeled acceleration is taken into account. Today, in the design and manufacture of a spacecraft to meet the requirements of the technical specifications for the maximum allowable values of unmodeled accelerations during the operation of on-board equipment, it is necessary to take into account the effects of asymmetric heat fluxes from the panels of the spacecraft on the deviation of its center of mass from a given orbit. This article discusses the problem of the influence of asymmetric heat fluxes from the surfaces of the spacecraft emanating from the panels ± Z, + Y (deterministic and non-deterministic component) on the level of unmodeled accelerations, which significantly affects the trajectory of the spacecraft.

In order to meet the requirements for the temperature control system in terms of ensuring efficient heat removal from the on-board equipment devices and its distribution over the surface of the instrument installation panel, it is necessary to significantly improve the technical characteristics of heat transfer and heat conduction processes in the spacecraft. The analysis of the current thermal control system in modern satellites is carried out and its shortcomings are revealed. A constructive option is proposed for creating an energy-intensive thermal panel, which allows more efficient heat removal from devices and distribution over the panel. The designed thermal panel is a flat sealed panel of a single complex design of aluminum alloy, made by the additive technology method. The dimensions of the thermal panel are limited by the structural dimensions of the working area of 3D printers. At the moment, the main dimensions reach 600-800 mm. An increase in the working area in the future will enable the installation of large-sized electronic equipment.

A two-dimensional mathematical model for calculating heat transfer processes in the designed thermal panel is presented. For the calculation, specific average values are introduced that characterize the effective cross sections for the vapor channels and the wick in the longitudinal and transverse directions, physical parameters (porosity of the wick and its degree of liquid saturation).

Siberian Aerospace Journal. 2020;21(3):382-388
pages 382-388 views

Study of impeller design parameters effect on the axial thrust of a centrifugal electric pump assembly

Kuznetsova Z., Sinichenko M., Kuznetsov A., Kleshnina I., Sin'kovskiy F.

Resumo

This paper discusses and estimates the effect of some design parameters on the value of axial thrust appearing during functioning of the core component of a spacecraft’s (SC) thermal control subsystem – electric pump unit (EPU). The major causes of axial forces in centrifugal pumps of in-line arrangement are described and analysed. Design parameters having an effect of axial thrust value are: impeller position relatively to EPU diffuser (position was chosen based on dimension chain calculation), presence and size of discharging holes in the impeller, number and shape of impeller vanes (numbers of 14 & 16 were considered). EPU impellers with different number and shape of vanes were designed and manufactured. A series of experiments was carried out in order to research the effects of all aforementioned parameters: measurements of head vs flow curves and axial thrust values at given flow values. Each parameter’s contribution in the value of axial thrust appearing during EPU functioning is evaluated. Vibration measurements were obtained and analysed for electric motor DBE 63-25-6.3 fitted with different impellers. In this study, a DLP additive process was used for impellers manufacturing, which significantly sped up the tests. Obtained results will extend knowledge of processes taking place in EPU impellers, enable choice of the aforementioned parameters at design phase so to minimise axial thrust appearing during functioning of a centrifugal EPU of a spacecraft’s thermal control subsystem. Outcomes of this study are capable of improving SC reliability at all phases of its life because EPU axial thrust causes its premature loss of operability.

Siberian Aerospace Journal. 2020;21(3):389-399
pages 389-399 views

Energy saving simulation test complex for spacecraft power supplies full-scale electrical tests

Lobanov D., Mizrah E., Samotik L., Tkachev S., Shtabel N.

Resumo

The aim of this paper is to describe an energy saving automatized simulation test complex used for spacecraft power supplies full-scale electrical ground-based tests.  The complex allows you to simulate the operation of solar array, lithium-ion-battery and spacecraft payload. The distinctive features of the test complex are a continuous and impulse control methods combination with  an improved dynamic accuracy, and recuperation of consumed energy into its internal DC network for the better energy efficiency. Test complex operational time from uninterruptible power supply accumulator batteries is significantly increased due to the recuperation of excess power into the test complex internal DC network. The results are experimentally proved.

The authors of the paper analyzed dynamic accuracy improvement and energy saving during ground-based spacecraft power system electrical tests. The process of ground-based spacecraft electrical testing includs the following tasks:

  • the accurate simulation of static and dynamic characteristics of spacecraft power system energy sources and loads;
  • the utilization of energy produced by power system under load and during spacecraft battery charge simulation.

The paper deals with the description of energy saving automatized simulation test complex (ESAST) including complex subsystems structure and experimental study of the test complex characteristics.

Commercially available simulation test complexes usually use continuous or impulse control methods. The continuous control methods decrease energy efficiency, as the most part of energy is dissipated on the regulator, which
requires massive heat sink, increasing weight and size. It makes difficult to produce high-power test complexes. The impulse control methods provide better energy efficiency, but limit dynamics and real devices fast response reproduction accuracy. The paper describes the combination of continuous and impulse control methods with the aim of taking the advantages of both.

The energy consumed by the test complex can be utilized either by the heat dissipation in the environment or by the recuperation into industrial AC grid. The heat dissipation reduces the energy efficiency, increases the testing room temperature (in case of high-power spacecraft power system) and an air conditioning system.  The recuperation into AC grid is free of specified disadvantages, but it requires the recuperated excess energy parameters matching with AC grid requirements through the network of grid-tied inverters, which leads to the increase of weight and size of the test complex. Moreover, the recuperation into AC grid is difficult during grid emergency shutdown, which can result in long test failure. The paper describes the method of excess energy recuperation into the complex internal DC network. The method significantly reduced test complex energy consumption, which in case of powering test complex from uninterruptible power supply (UPS) notably increase operating time from UPS accumulator batteries during AC grid emergency shutdown.

In conclusion the main advantages of ESAST are given:

  • more than twice wattage reduction of test complex main power supply;
  • the ability to work during AC grid emergency shutdown with increased operating time from UPS;
  • the significant reducing of ESAST main parts weight and size.
Siberian Aerospace Journal. 2020;21(3):400-408
pages 400-408 views

Determination of the digital controller’s characteristics of the switched-mode power converters

Lopatin A., Druzhinin A., Asochakov A., Puchkov A.

Resumo

The development of spacecrafts equipment is on the way to digitalization. In particular,  energy spacecraft conversion devices are being modernized by introducing digital automatic control systems instead of analog ones. This leads to an increase in the efficiency of the power supply system, but at the same time, there is a need to create methods to determine characteristics that will confirm with a high degree of accuracy and conformity of the manufactured sample with the technical requirements specified during its design. The article describes the features of functioning and methodology for determining digital control channel of a pulse voltage converter’s characteristics. The proposed approach is a toolkit for verifying the correct implementation of both the hardware parts of the control channel and the controller, which is a program code implemented on digital control devices. The technique is based on determining the degree of responses correspondence to typical external influences of a hardware-implemented control channel and its model. Based on the transfer functions of the IIR and FIR digital filters, using standard built-in models, the control channel of the pulse voltage converter corresponding to the tested hardware-implemented device is simulated in the package Matlab Simulink. The basic principles of building the software architecture experiment are described. A block diagram of the test complex has been developed, including sources of external influence, control channel, and a test management tool (in this case, a personal computer). An example of applying such a technique to verify the parameters of the developed PID controller is given. Operability and accuracy of the proposed method to determine characteristics of the control channel by reaction to a sequence of rectangular pulses, and by constructing the AFCL are experimentally shown. Application of this verification method to production conditions will allow a complete check of individual central control units (CCU) of energy-converting equipment with closed feedbacks even at the stage of devices development, which will eliminate errors in the implementation of regulators in control loops.

Siberian Aerospace Journal. 2020;21(3):409-416
pages 409-416 views

CFD methods for cavitation modeling in centrifugal and axial pumps of LRE

Torgashin A., Zhujkov D., Nazarov V., Begishev A., Vlasenko A.

Resumo

Currently, design and manufacture of liquid-propellant rocket engines (LRE) are imposed with ever greater reliability requirements. Accordingly, the standards for the design and manufacture of rocket engine units are raising. One of these units is a turbopump unit (TNA), which provides continuous supply of liquid components from combustion reaction to the combustion chamber of a rocket engine to create traction or other engine units. TNA is also the main source of pressure increase for these liquid components in front of the LRE combustion chamber. Important requirements are imposed on a turbopump unit (TNA): ensuring work performance and basic parameters for a given resource with the necessary possible pauses of a specified duration; providing all engine operating modes, supplying the fuel components of the required flow rate and pressure, guarantying a high degree of reliability with acceptable entire unit efficiency; providing high anti-cavitation characteristics of the pump in all modes. In the article, the authors summarize the latest results of the study on cavitation in turbopump units of liquid propellant rocket engines alongside with the relevant research in the field of hydraulics. The problems of cavitation in cryogenic liquids, simulation of stall characteristics, and usability of various models to simulate cavitation flow are observed. A solution to the problems of flow modeling was considered with respect to applicability to the following structural elements of LRE units: interscapular space of the screw centrifugal main and booster pumps, axial pre-pump. Particular attention is paid to the implementation of various numerical methods based on the use of various cavitation models, computational fluid dynamics in various CFD packages, and also comparison of results with the model. In summary, the authors draw conclusions about the possibility of applying these methods to solve the problems of the cavitation phenomenon research in LRE.

Siberian Aerospace Journal. 2020;21(3):417-422
pages 417-422 views

Section 3. Technological Processes and Materials

Simulation of the induction soldering process of waveguide paths from aluminum alloys

Bocharova O., Murygin A., Bocharov A., Zaitsev R.

Resumo

A system of waveguide paths is a complex structure of various elements with various geometries. Induction soldering based on the induction heating method is one of the promising methods for waveguides fabricating. Induction soldering of waveguide paths has a number of technological features: the melting temperature of the base material AD31 (695–663 0C) slightly differs from the melting temperature of St. AK12 solder (577–580 0C) at an average induction heating rate of 20–25 0C / sec; a wide variety of standard sizes of waveguide paths elements complicates the development and subsequent reproduction of technological parameters of the induction soldering process; zones of maximum heating of waveguide paths elements do not coincide with zones of soldering. Therefore, to solve the problems of controlling the waveguides soldering process, it is necessary to simulate this process.  The paper deals with the problem of simulating the process of heating a waveguide during induction soldering. Requirements for the process model have been formed. The model is built on the basis of the differential heat conduction equation. The formed model requirements take into account the geometric parameters of waveguides, the physical parameters of materials, the initial and boundary conditions, as well as the uneven distribution of eddy current density in the waveguide. It is proposed to use the finite difference method for the numerical solution of the heat conduction equation. The process of calculating the temperature at the grid nodes is shown. The authors propose a two-stage solution. At the first stage, at an intermediate time step, the temperature at the grid nodes along the X axis is calculated. At the second stage, the temperature at the grid nodes along the Y axis is calculated. The numerical solution of the difference equations along the X and Y axes is carried out by the sweep method. An algorithm for the numerical solution of the heat conduction equation has been developed.

Siberian Aerospace Journal. 2020;21(3):424-432
pages 424-432 views

Point defects in nematic liquid crystal materials with conical anchoring at the interface

Krakhalev M., Shabanov V., Zyryanov V.

Resumo

The topological point defects in nematic liquid crystal materials have been studied. The method of oblique light incidence has been proposed to determine an azimuthal director angle of an achiral nematic as well as a chiral nematic (cholesteric). The idea of the method is based on the dependence of the optical phase difference between ordinary and extraordinary light beams on the azimuthal director angle at the layer center at oblique incidence of light on a structure in which the polar director angle of a nematic liquid crystal is not equal to 0° or 90° (conical boundary conditions). It has been shown that the phase difference reaches a maximum at a zero azimuthal angle at the center of the layer regardless of the total twist angle of the director. The developed method has been used to analyze topological defects formed in the nematic and cholesteric layers under conical boundary conditions at the interface. The director field distributions of nematic and cholesteric near the surface point defects (boojums) with topological charges m = +1 and m = –1 have been drawn based on the experimental data. The proposed method of oblique light incidence can be used to analyze a wide class of the achiral and chiral liquid crystal media of various types: smectics, nematics, and cholesterics with tilted or hybrid boundary conditions.

Siberian Aerospace Journal. 2020;21(3):433-440
pages 433-440 views

Electronic structure change at cationic substitution of manganese sulfide by elements with variable valence

Romanova O., Aplesnin S., Udod L.

Resumo

Cation-substituted solid solutions YbXMn1-XS were prepared by the melt method from polycrystalline sulfide powders. The synthesized samples are antiferromagnetic semiconductors and, according to the results of X-ray structural analysis, have an FCC structure of the NaCl type. Structural, electrical, optical, and acoustic properties of the chalcogenide system YbXMn1-XS were studied in the temperature range 80–500 K. The effect of variable valence elements on the electronic structure of cationic substitution of manganese sulfide has been studied. The change in the electronic structure in the YbXMn1-XS system occurs due to the electron-phonon interaction. Samples with variable valence have anomalous compressibility, which is confirmed by the data on the thermal expansion coefficient and the change in the attenuation coefficient. As a result of inelastic interaction with d- electrons, the density of states at the Fermi level changes, this is reflected in the temperature dependence of the conductivity. The positions of the f-level and two electronic transitions were determined from the IR spectra. A zone of temperatures and concentrations was found, where a correlation of structural, electrical, optical and acoustic properties is observed. To explain the experimental results, the electronic structure of the semiconductor is considered and a model is proposed that qualitatively describes the experiment.

Siberian Aerospace Journal. 2020;21(3):441-450
pages 441-450 views

Influence of the magnetic field on transport properties of holmium – manganese sulfide

Sitnikov M., Kharkov A., Aplesnin S., Romanova O.

Resumo

Holmium-manganese sulfide with giant magnetoresistance refers to new magnetic sulfide compounds of holmium and manganese that have the effect of giant magnetoresistance (i. e., with special magnetoelectric properties), which can be used as components of sensor technology, magnetic memory, and spintronics. The technology of manufacturing polycrystals HoXMn1-XS grown by crystallization from the melt of the obtained powdered sulfides with a purity not lower than 99,9 %, in glass-carbon crucibles and a quartz reactor in an argon atmosphere is presented. According to the results of x-ray diffraction analysis, HoXMn1-XS holmium-manganese sulfides have a HCC structure of the NaCl type. As the degree of cationic substitution increases, the unit cell parameter increases linearly with the concentration. No concomitant impurity phases are detected in the synthesized samples. To determine the state of the spin glass, magnetic moment measurements are conducted at several frequencies ω = 1 kHz, 10 kHz and 100 kHz. The dependence of magnetic characteristics on the frequency of measurements is found. The damping of the magnetic moment and its increase with a decrease in temperature is reviled, which is connected with the formation of metastable States. Measurements of electrical resistance without a field and in a magnetic field are conducted. Anomalies in the temperature dependence of the conductivity are found. A change in the magnetoresistance sign is detected with the increase of temperature below and above room temperature.

Siberian Aerospace Journal. 2020;21(3):451-458
pages 451-458 views

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies