Lysosomal storage diseases. Sphingolipidoses — sphingomyelin lipidosis, or Niemann–Pick disease, Wolman disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The epidemiology, clinical biochemical and molecular genetic characteristics of glycosphingolipidoses with impaired metabolism and excessive accumulation in parenchymal organs, bone and brain not only of sphingolipids, but also free cholesterol are presented. First of all, it is sphingomyelin lipidosis, or Niemann–Pick disease, a clinically polymorphic and genetically heterogeneous group of rare monogenic diseases. Types A and B, which differ in onset and severity, are allelic diseases and are caused by the presence of recessive mutations in the lysosomal acid sphingomyelinase (SMPD1) gene. Type A is a classic acute neuronopathy, which starts in 85% of cases before 6 months, death occurs before the age of 3 years. The cause of the disease is mutations with premature termination of translation or severe impairment of the catalytic activity of the enzyme. In type B, missense mutations are more common. This is a chronic visceral form, in which neurological symptoms are usually absent, and patients survive into adolescence. Juvenile and adult forms of chronic neuronopathy type C are genetically heterogeneous. In 95% of cases they are caused by mutations in the NPC1 gene (type C1) and in 5% — in the NPC2 gene (type C2). The products of these genes are transmembrane proteins responsible for the transport of cholesterol and other lipids. Cholesterol ester storage disease, or Wolman disease, is caused by hereditary deficiency of lysosomal acid lipase A. The possibility of early diagnosis of these diseases based on neonatal screening is discussed in order to increase the effectiveness of their prevention and treatment. The importance of experimental models for studying the molecular basis of the pathogenesis of these severe hereditary diseases and developing various therapeutic approaches, such as bone marrow transplantation, enzyme replacement therapy, and substrate-reducing therapy, is emphasized. A clinical example of Niemann–Pick disease type C is presented.

Full Text

Restricted Access

About the authors

Victoria N. Gorbunova

St. Petersburg State Pediatric Medical University


Dr. Sci. (Biol.), Professor, Department of Medical Genetics

Russian Federation, Saint Petersburg

Natalia V. Buchinskaia

St. Petersburg State Medical Diagnostic Center (Genetic medical center)

Author for correspondence.

MD, PhD, Pediatrician, Geneticist

Russian Federation, Saint Petersburg


  1. Alekseev VV, Alipov AN, Andreev VA, et al. Meditsinskie laboratornye tekhnologii. 3rd edition. Vol. 2. Moscow: GEHOTAR-Media, 2013. 792 p. (In Russ.)
  2. Gorbunova VN. Congenital metabolic diseases. Lysosomal storage diseases. Pediatrician (St. Petersburg). 2021;12(2):73–83. (In Russ.) doi: 10.17816/PED12273-83
  3. Gorbunova VN, Baranov VS. Vvedenie v molekulyarnuyu diagnostiku i genoterapiyu nasledstvennykh zabolevanii. Saint Petersburg: Spetsial’naya Literatura, 1997. 287 p. (In Russ.)
  4. Gorbunova VN, Buchinskaia NV. Lysosomal storage diseases: mucopolysaccharidosis type I and II. Pediatrician (St. Petersburg). 2021;12(30):69–83. (In Russ.) doi: 10.17816/PED12369-83
  5. Gorbunova VN, Buchinskaia NV. Lysosomal storage diseases. Mucopolysaccharidosis type III, Sanfilippo syndrome. Pediatrician (St. Petersburg). 2021;12(4):69–81. (In Russ.) doi: 10.17816/PED12469-81
  6. Gorbunova VN, Buchinskaia NV. Lysosomal storage diseases. Mucopolysaccharidosis types IV, VI, and VII — Morquio, Maroto–Lamy and Sly syndrome. Pediatrician (St. Petersburg). 2021;12(6):107–125. (In Russ.) doi: 10.17816/PED126107-125
  7. Gorbunova VN, Buchinskaia NV, Janus GA, Kostik MM. Lysosomal storage diseases. Sphingolipidoses — Fabry, Gaucher and Farber diseases. Pediatrician (St. Petersburg). 2022;13(2):61–88. (In Russ.) doi: 10.17816/PED13261-88
  8. Krasnopol’skaya KD. Nasledstvennye bolezni obmena veshchestv. Spravochnoe posobie dlya vrachei. Moscow: ROO Tsentr sotsial’noi adaptatsii i reabilitatsii detei “Fokhat”, 2005. 364 p. (In Russ.)
  9. Assotsiatsiya meditsinskikh genetikov, Soyuz pediatrov Rossii. Klinicheskie rekomendatsii. Bolezn’ Nimanna-Pika tip S. Moscow: MZ RF; 2019. 59 p. (In Russ.)
  10. Novikov PV, Semyachkina AN, Voinova VYu, Zakharova EYu. Federal’nye klinicheskie rekomendatsii po diagnostike i lecheniyu bolezni Nimanna-Pika tip S. Moscow: MZ RF; 2013. 29 p. (In Russ.)
  11. Semyachkina AN, Bukina TM, Kurbatov MB, et al. Niemann–Pick a disease in children. Russian Bulletin of perinatology and pediatrics. 2008;53(4):52–57. (In Russ.)
  12. Anderson RA, Byrum RS, Coates PM, Sando GN. Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease. PNAS. 1994;91(7): 2718–2722. doi: 10.1073/pnas.91.7.2718
  13. Anderson RA, Rao N, Byrum RS, et al. In situ localization of the genetic locus encoding the lysosomal acid lipase/cholesteryl esterase (LIPA) deficient in Wolman disease to chromosome 10q23.2-q23.3. Genomics. 1993;15(1):245–247. doi: 10.1006/geno.1993.1052
  14. Aslanidis C, Klima H, Lackner KJ, Schmitz G. Genomic organization of the human lysosomal acid lipase gene (LIPA). Genomics. 1994;20(2):329–331. doi: 10.1006/geno.1994.1180
  15. Aslanidis C, Ries S, Fehringer P, et al. Genetic and biochemical evidence that CESD and Wolman disease are distinguished by residual lysosomal acid lipase activity. Genomics. 1996;33(1):85–93. doi: 10.1006/geno.1996.0162
  16. Bauer P, Knoblich R, Bauer C, et al. NPC1: complete genomic sequence, mutation analysis, and characterization of haplotypes. Hum Mutat. 2002;19(1):30–38. doi: 10.1002/humu.10016
  17. Blanchette-Mackie EJ, Dwyer NK, Avende LM, et al. Type C Niemann–Pick disease: low density lipoprotein uptake is associated with premature cholesterol accumulation in the Golgi complex and excessive cholesterol storage in lysosomes. PNAS. 1988;85(21): 8022–8026. doi: 10.1073/pnas.85.21.8022
  18. Burton BK, Reed SP. Acid lipase cross-reacting material in Wolman disease and cholesterol ester storage disease. Am J Hum Genet. 1981;33:203–208.
  19. Burton BK, Balwani M, Feillet F, et al. A phase 3 trial of sebelipase alfa in lysosomal acid lipase deficiency. N Engl J Med. 2015;373:1010–1020. doi: 10.1056/NEJMoa1501365
  20. Carstea ED, Morris JA, Coleman KG, et al. Niemann–Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science. 1997;277:228–231.
  21. Carstea ED, Polymeropouis MH, Parker CC, et al. Linkage of Niemann–Pick disease type C to human chromosome 18. PNAS. 1993;90(5):2002–2004. doi: 10.1073/pnas.90.5.2002
  22. Davidson CD, Ali NF, Micsenyi MC, et al. Chronic cyclodextrin treatment of murine Niemann–Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS One. 2009;4(9): 0006951. doi: 10.1371/journal.pone.0006951
  23. Du H, Duanmu M, Witte D, Grabowski GA. Targeted disruption of the mouse lysosomal acid lipase gene: long-term survival with massive cholesteryl ester and triglyceride storage. Hum Mol Genet. 1998;7(9): 1347–1354. doi: 10.1093/hmg/7.9.1347
  24. Du H, Schiavi S, Levine M, et al. Enzyme therapy for lysosomal acid lipase deficiency in the mouse. Hum Mol Genet. 2001;10(16):1639–1648. doi: 10.1093/hmg/10.16.1639
  25. Elrick MJ, Pacheco CD, Yu T, et al. Conditional Niemann–Pick C mice demonstrate cell autonomous Purkinje cell neurodegeneration. Hum Mol Genet. 2010;19(5):837–847. doi: 10.1093/hmg/ddp552
  26. Fernandez-Valero EM, Ballart A, Iturriaga C, et al. Identification of 25 new mutations in 40 unrelated Spanish Niemann–Pick type C patients: genotype-phenotype correlations. Clin Genet. 2005;68(3):245–254. doi: 10.1111/j.1399-0004.2005.00490.x
  27. Friedland N, Liou H-L, Lobel P, Stock AM. Structure of a cholesterol-binding protein deficient in Niemann–Pick type C2 disease. PNAS. 2003;100(5):2512–2517. doi: 10.1073/pnas.0437840100
  28. Fujiyama J, Sakuraba H, Kuriyama M, et al. A new mutation (LIPA Tyr22X) of lysosomal acid lipase gene in a Japanese patient with Wolman disease. Hum Mutat. 1996;8:377–380. doi: 10.1002/(SICI)1098-1004(1996)8:4<377::AID-HUMU15>3.0.CO;2-#
  29. Garver WS, Francis GA, Jelinek D, et al. The National Niemann–Pick C1 Disease Database: report of clinical features and health problems. Am J Med Genet. 2007;143A(11):1204–1211. doi: 10.1002/ajmg.a.31735
  30. Greer WL, Riddell DC, Byers DM, et al. Linkage of Niemann–Pick disease type D to the same region of human chromosome 18 as Niemann–Pick disease type C. Am J Hum Genet. 1997;61:139–142. doi: 10.1086/513899
  31. Greer WL, Riddell DC, Gillan TL, et al. The Nova Scotia (type D) form of Niemann–Pick disease is caused by a 3097G-T transversion in NPC1. Am J Hum Genet. 1998;63(1):52–54. doi: 10.1086/301931
  32. Greer WL, Riddell DC, Murty S, et al. Linkage disequilibrium mapping of the Nova Scotia variant of Niemann–Pick disease. Clin Genet. 1999;55(4):248–255. doi: 10.1034/j.1399-0004.1999.550406.x
  33. Horinouchi K, Erlich S, Perl DP, et al. Acid sphingomyelinase deficient mice: a model of types A and B Niemann–Pick disease. Nat Genet. 1995;10:288–293. doi: 10.1038/ng0795-288
  34. Ioannou YA. The structure and function of the Niemann–Pick C1 protein. Mol Genet Metab. 2000;71 (1–2):175–181. doi: 10.1006/mgme.2000.3061
  35. Kirchhoff C, Osterhoff C, Habben I, Ivell R. Cloning and analysis of mRNAs expressed specifically in the human epididymis. Int J Androl. 1990;13(2):155–167. doi: 10.1111/j.1365-2605.1990.tb00972.x
  36. Kirkegaard T, Roth AG, Petersen NHT, et al. Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology. Nature. 2010;463:549–553. doi: 10.1038/nature08710
  37. Klima H, Ullrich K, Aslanidis C, et al. A splice junction mutation causes deletion of a 72-base exon from the mRNA for lysosomal acid lipase in a patient with cholesteryl ester storage disease. J Clin Invest. 1993;92(60):2713–2718. doi: 10.1172/JCI116888
  38. Ko DC, Binkley J, Sidow A, Scott MP. The integrity of a cholesterol-binding pocket in Niemann–Pick C2 protein is necessary to control lysosome cholesterol levels. PNAS. 2003;100(5):2518–2525. doi: 10.1073/pnas.0530027100
  39. Koch G, Lalley PA, McAvoy M, Shows TB. Assignment of LIPA, associated with human acid lipase deficiency to human chromosome 10 and comparative assignment to mouse chromosome 19. Somat Cell Genet. 1981;7:345–358. doi: 10.1007/BF01538859
  40. Kohli R, Ratziu V, Fiel MI, et al. Initial assessment and ongoing monitoring of lysosomal acid lipase deficiency in children and adults: Consensus recommendations from an international collaborative working group. Mol Genet Metab. 2020;129(2):59–66. doi: 10.1016/j.ymgme.2019.11.004
  41. Kurimasa A, Ohno K, Oshimura M. Restoration of cholesterol metabolism in 3T3 cell lenes derived from the sphingomyelinosis mouse (spm/spm) by transfer of a human chromosome 18. Hum Genet. 1993;92: 157–162. doi: 10.1007/BF00219684
  42. Langmade SJ, Gale SE, Frolov A, et al. Pregnane X receptor (PXR) activation: a mechanism for neuroprotection in a mouse model of Niemann–Pick C disease. PNAS. 2006;103(37):13807–13812. doi: 10.1073/pnas.0606218103
  43. Levran O, Desnick RJ, Schuchman EH. Niemann–Pick type B disease: identification of a single codon deletion in the acid sphingomyelinase gene and genotype/phenotype correlations in the type A and B patients. J Clin Invest. 1991;88(3):806–810. doi: 10.1172/JCI115380
  44. Levran O, Desnick RJ, Schuchman EH. Identification and expression of a common missense mutation (L302P) in the acid sphingomyelinase gene of Ashkenazi Jewish type A Niemann–Pick disease patients. Blood. 1992;80:2081–2087. doi: 10.1182/blood.V80.8.2081.bloodjournal8082081
  45. Levran O, Desnick RJ, Schuchman EH. Type A Niemann–Pick disease: a frame shift mutation in the acid sphingomyelinase gene (fsP330) occurs in Ashkenazi Jewish patients. Hum Mutat. 1993;2(4):317–319. doi: 10.1002/humu.1380020414
  46. Liu B. Therapeutic potential of cyclodextrins in the treatment of Niemann–Pick type C disease. Clin Lipidol. 2012;7(3):289–301. doi: 10.2217/clp.12.31
  47. Lloyd-Evans E, Morgan AJ, He X, et al. Niemann–Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med. 2008;14:1247–1255. doi: 10.1038/nm.1876
  48. Loftus SK, Erickson RP, Walkley SU, et al. Rescue of neurodegeneration in Niemann–Pick C mice by a prion-promoter-driven Npc1 cDNA transgene. Hum Mol Genet. 2002;11(24):3107–3114. doi: 10.1093/hmg/11.24.3107
  49. Loftus SK, Morris JA, Carstea ED, et al. Murine model of Niemann–Pick C disease: mutation in a cholesterol homeostasis gene. Science. 1997;277(5323):232–235. doi: 10.1126/science.277.5323.232
  50. Lyseng-Williamson KA. Miglustat: a review of its use in Niemann–Pick disease type C. Drugs. 2014;74(1): 61–74. doi: 10.1007/s40265-013-0164-6
  51. McGovern MM, Lippa N, Bagiella E, et al. Morbidity and mortality in type B Niemann–Pick disease. Genet Med. 2013;15(8):618–623. doi: 10.1038/gim.2013.4
  52. Marathe S, Miranda SRP, Devlin C, et al. Creation of a mouse model for non-neurological (type B) Niemann–Pick disease by stable, low level expression of lysosomal sphingomyelinase in the absence of secretory sphingomyelinase: relationship between brain intra-lysosomal enzyme activity and central nervous system function. Hum Mol Genet. 2000;9(13): 1967–1976. doi: 10.1093/hmg/9.13.1967
  53. Maslen CL, Babcock D, Illingworth DR. Occurrence of a mutation associated with Wolman disease in a family with cholesteryl ester storage disease. J Inher Metab Dis. 1995;18(5):620–623. doi: 10.1007/BF02436008
  54. McGovern MM, Wasserstein MP, Kirmse B, et al. Novel first-dose adverse drug reactions during a phase I trial of olipudase alfa (recombinant human acid sphingomyelinase) in adults with Niemann–Pick disease type B (acid sphingomyelinase deficiency). Genet Med. 2016;18(1):34–40. doi: 10.1038/gim.2015.24
  55. Millat G, Chikh K, Naureckiene S, et al. Niemann–Pick disease type C: spectrum of HE1 mutations and genotype/phenotype correlations in the NPC2 group. Am J Hum Genet. 2001;69(5):1013–1021. doi: 10.1086/324068
  56. Millat G, Marcais C, Tomasetto C, et al. Niemann–Pick C1 disease: correlations between NPC1 mutations, levels of NPC1 protein, and phenotypes emphasize the functional significance of the putative sterol-sensing domain and of the cysteine-rich luminal loop. Am J Hum Genet. 2001;68(6):1373–1385. doi: 10.1086/320606
  57. Miyawaki S, Yoshida H, Mitsuoka S, et al. A mouse model for Niemann-Pick disease: influence of genetic background on disease expression in spm/spm mice. J Hered. 1986;77(6):379–384. doi: 10.1093/oxfordjournals.jhered.a110265
  58. Morris JA, Zhang D, Coleman KG, et al. The genomic organization and polymorphism analysis of the human Niemann–Pick C1 gene. Biochem Biophys Res Commun. 1999;261(2):493–498. doi: 10.1006/bbrc.1999.1070
  59. Naureckiene S, Sleat DE, Lackland H, et al. Identification of HE1 as the second gene of Niemann–Pick C disease. Science. 2000;290(5500):2298–2301. doi: 10.1126/science.290.5500.2298
  60. Otterbach B, Stoffel W. Acid sphingomyelinase-deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann–Pick disease). Cell. 1995;81: 1053–1061. doi: 10.1016/S0092-8674(05)80010-8
  61. Ottinger EA, Kao ML, Carrillo-Carrasco N, et al. Collaborative development of 2-hydroxypropyl-β-cyclodextrin for the treatment of Niemann–Pick type C1 disease. Curr Top Med Chem. 2014;14(3):330–339. doi: 10.2174/1568026613666131127160118
  62. Park WD, O’Brien JF, Lundquist PA, et al. Identification of 58 novel mutations in Niemann–Pick disease type C: correlation with biochemical phenotype and importance of PTC1-like domains in NPC1. Hum Mutat. 2003;22(40):313–325. doi: 10.1002/humu.10255
  63. Pastores GM, Hughes DA. Lysosomal Acid Lipase Deficiency: Therapeutic Options. Drug Des Devel Ther. 2020;14:591–601. doi: 10.2147/DDDT.S149264
  64. Patel SC, Suresh S, Kumar U, et al. Localization of Niemann–Pick C1 protein in astrocytes: implications for neuronal degeneration in Niemann–Pick type C disease. PNAS. 1999;96(4):1657–1662. doi: 10.1073/pnas.96.4.1657
  65. Patterson MC, Hendriksz ChJ, Walterfang M, et al. Frits Wijburgon behalf of the NP-C Guidelines Working Group Recommendations for the diagnosis and management of Niemann–Pick disease type C: An update. Mol Genet Metab. 2012;106(3):330–344. doi: 10.1016/j.ymgme.2012.03.012
  66. Patterson MC, Vecchio D, Prady H, et al. Miglustat for treatment of Niemann–Pick C disease: a randomised controlled study. Lancet Neurol. 2007;6(9):765–772. doi: 10.1016/S1474-4422(07)70194-1
  67. Da Veiga Pereira L, Desnick RJ, Adler DA, et al. Regional assignment of the human acid sphingomyelinase gene (SMPD1) by PCR analysis of somatic cell hybrids and in situ hybridization to 11p15.1-p15.4. Genomics. 1991;9(2): 229–234. doi: 10.1016/0888-7543(91)90246-B
  68. Quintern LE, Schuchman EH, Levran O, et al. Isolation of cDNA clones encoding human acid sphingomyelinase: occuerance of alternativelly processed transcript. EMBO J. 1989;5:2469–2473. doi: 10.1002/j.1460-2075.1989.tb08382.x
  69. Ribeiro I, Marcao A, Amaral O, et al. Niemann–Pick type C disease: NPC1 mutations associated with severe and mild cellular cholesterol trafficking alterations. Hum Genet. 2001;109:24–32. doi: 10.1007/s004390100531
  70. Sakai Y, Miyawaki S, Shimizu A, et al. A molecular genetic linkage map of mouse chromosome 18, including spm, Grl1, Fim-2/c-fms, and Mbp. Biochem Genet. 1991;29:103–113. doi: 10.1007/BF00578243
  71. Samaranch L, Pérez-Cañamás A, Soto-Huelin B, et al. Adeno-associated viral vector serotype 9-based gene therapy for Niemann–Pick disease type A. Sci Transl Med. 2019;11(506):eaat3738. doi: 10.1126/scitranslmed.aat3738
  72. Schuchman EH, Suchi M, Takahashi T, et al. Human acid sphingomyelinase: isolation, nucleotide sequence, and expression of the full-length and alternatively spliced cDNAs. J Biol Chem. 1991;266(13): 8531–8539. doi: 10.1016/S0021-9258(18)93007-3
  73. Schuchman EH, Levran O, Pireira LV, Desnick RJ. Structural organization and complete nucleotide sequence of the gene encoding human acid sphingomyelinase (SPMD1). Genomics. 1992;12(2):197–205. doi: 10.1016/0888-7543(92)90366-Z
  74. Schuchman EH. The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann–Pick disease. J Inherit Metab Dis. 2007;30(5):654–663. doi: 10.1007/s10545-007-0632-9
  75. Sidhu R, Kell P, Dietzen DJ, et al. Application of N-palmitoyl-O-phosphocholineserine for diagnosis and assessment of response to treatment in Niemann–Pick type C disease. Mol Genet Metab. 2020;129(4): 292–302. doi: 10.1016/j.ymgme.2020.01.007
  76. Simonaro CM, Desnick RJ, McGovern MM, et al. The demographics and distribution of type B Niemann–Pick disease: novel mutations lead to new genotype/phenotype correlations. Am J Hum Genet. 2002;71(6):1413–1419. doi: 10.1086/345074
  77. Sleat DE, Wiseman JA, El-Banna M, et al. Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. PNAS. 2004;101(16): 5886–5891. doi: 10.1073/pnas.0308456101
  78. Steinberg SJ, Ward CP, Fensom AH. Complementation studies in Niemann–Pick disease type C indicate the existence of a second group. J Med Genet. 1994;31:317–320. doi: 10.1136/jmg.31.4.317
  79. Suchi M, Denur T, Desnick RJ, et al. Retroviral-mediated transfer of the human acid sphingomyelinase cDNA: correction metabolic defect in cultured Niemann–Pick disease cells. PNAS. 1992;89(8):3227–3231. doi: 10.1073/pnas.89.8.3227
  80. Takahashi T, Suchi M, Desnick RJ, et al. Identification and expression of five mutations in the human acid sphingomyelinase gene causing type A and B Niemann–Pick disease: molecular evidence for genetic heterogeneity in the neuronopathic and non-neuronopathic forms. J Biol Chem. 1992;267(18): 12552–12558. doi: 10.1016/S0021-9258(18)42312-5
  81. Thomas GH, Tuck-Muller CM, Miller CS, Reynolds LW. Correction of sphingomyelinase deficiency in Niemann–Pick disease type C fibroblasts by removal of lipoprotein fraction from culture media. J Inherit Metab Dis. 1989;12(2):139–151. doi: 10.1007/BF01800716
  82. Vance JE. Lipid imbalance in the neurological disorder, Niemann–Pick C disease. FEBS Lett. 2006;580(23): 5518–5524. doi: 10.1016/j.febslet.2006.06.008
  83. Vanier MT, Duthel S, Rodriguez-Lafrasse C, et al. Genetic heterogeneity in Niemann–Pick C disease: a study using somatic cell hybridization and linkage analysis. Am J Hum Genet. 1996;58:118–125.
  84. Vanier MT, Ferlinz K, Rousson R, et al. Deletion of arginine (608) in acid sphingomyelinase is the prevalent mutation among Niemann–Pick disease type B patients from northern Africa. Hum Genet. 1993;92: 325–330. doi: 10.1007/BF01247328
  85. Vanier MT, Millat G. Niemann–Pick disease type C. Clin Genet. 2003;64(4):269–281. doi: 10.1034/j.1399-0004.2003.00147.x
  86. Vanier MT, Rodriguez-Lafrasse C, Rousson R, et al. Type C Niemann–Pick disease: biochemical aspects and phenotypic heterogeneity. Dev Neurosci. 1991; 13(4–5):307–314. doi: 10.1159/000112178
  87. Vanier MT, Wenger DA, Comly ME, et al. Niemann–Pick disease group C: clinical variability and diagnosis based on defective cholesterol esterification: a collaborative study on 70 patients. Clin Genet. 1988;33(5):331–348. doi: 10.1111/j.1399-0004.1988.tb03460.x
  88. Verot L, Chikh K, Freydiere E, et al. Niemann–Pick C disease: functional characterization of three NPC2 mutations and clinical and molecular update on patients with NPC2. Clin Genet. 2007;71(4):320–330. doi: 10.1111/j.1399-0004.2007.00782.x
  89. Wasserstein MP, Jones SA, Soran H, et al. Successful within-patient dose escalation of olipudase alfa in acid sphingomyelinase deficiency. Mol Genet Metab. 2015; 116(1–2):88–97. doi: 10.1016/j.ymgme.2015.05.013
  90. Wassif CA, Cross JL, Iben J, et al. High incidence of unrecognized visceral/neurological late-onse Niemann–Pick disease, type C1, predicted by analysis of massively parallel sequencing data sets. Genet Med. 2016;18(1):41–48. doi: 10.1038/gim.2015.25
  91. Winsor EJT, Welch JP. Genetic and demographic aspects of Nova Scotia Niemann–Pick disease (type D). Am J Hum Genet. 1978;30:530–538.
  92. Yamamoto T, Nanba E, Ninomiya H, et al. NPC1 gene mutations in Japanese patients with Niemann–Pick disease type C. Hum Genet. 1999;105:10–16. doi: 10.1007/s004399900059

Copyright (c) 2022 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 69634 от 15.03.2021 г.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies