Pathophysiological principles for evaluating hemodynamic


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The diagnosis and treatment of patients with hemodynamic disorders is basing of the understanding the physiology and pathophysiology of cardiovascular system. The relationship between length of muscle fibers and power reduction were first time revealed by Fick. Otto Frank was formulated fundamental principles of contractility of cardiomyocytes. Straub and Wiggers in 1914 was described the mail principles of the right ventricle work. Ernest Starling was performed a series of experiments, which explore a dependence of left ventricular ejection from venous inflow and elastic resistance of the aorta. In 1914 Ernest Starling was published research result, which describe how the mechanical energy of heart beats is depend from length fiber. Another essential part of knowledge of this problem was discovered by Aurtur Guyton experiments. Guyton has been established that there is a linear relationship between the pressure in the right atrium and the venous return. The lack of quantitative assessment of volume status has led to a qualitative approach, de-scribed by the term “response to the volume load.” However, as pointed out by some authors [16, 29], it is important to remember that the response to the preload is not a pathological condition. A quantitative approach to the assessment of volume status is based on the concept of Guyton on average system pressure filling, theoretically independent of cardiac function. This approach is used clinically. In this review article we describe possibility of clinical application of all knowledge of this questions.

Full Text

Restricted Access

About the authors

Sergey Pavlovich Marchenko

Saint Petersburg State Pediatric Medical University

Email: sergeimarchenkospb@gmail.com
MD, PhD, Dr Med Sci, Professor, Department of Сardiac Surgery

Gennadiy Grigorevich Khubulava

Saint Petersburg State Pediatric Medical University

Email: khubulava@clubcvs.ru
MD, PhD, Dr Med Sci, Professor, Department of Сardiac Surgery

Alexey Borisovich Naumov

Saint Petersburg State Pediatric Medical University

Email: naumov99@gmail.com
MD, PhD, Associate Professor, Department of Anaesthesiology and Resuscitation

Anastasia Alexeevna Seliverstova

Saint Petersburg State Pediatric Medical University

Email: alisa-0072006@yandex.ru
Assistant Professor, Department of Сardiac Surgery

Natalia Dmitrievna Cipurdeeva

Military Medical Academy named after S. M. Kirov

Email: cipurdeeva@gmail.com
Student

Vitaliy Vladimirovich Suvorov

Saint Petersburg State Pediatric Medical University

Email: vitalikkrak@gmail.com
Assistent Professor, Department of Сardiac Surgery

Oksana Vladimirovna Nevmergitskaiy

Saint Petersburg State Pediatric Medical University

Email: ovnevmer@gmail.com
MD, PhD, Chiev of Neonatology of Pediatric

Uriy Stanislavovich Alexandrovich

Saint Petersburg State Pediatric Medical University

Email: jalex1963@mail.ru
MD, PhD, Dr Med Sci, Professor, Head, Department of Anesthe-siology, Intensive Care and Emergency Pediatrics Postgraduate Education

Evginiy Sergeevich Kulemin

Saint Petersburg State Pediatric Medical University

Email: kulemin.es@gmail.com
Intern, Department of Сardiac Surgery

References

  1. Barbier C., Loubieres Y., Schmit C., et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intens. Care. Med. 2004; 30: 1740-46.
  2. Bayliss W. M., Starling E. H. Observations on venous pressures and their relationship to capillary pressures. J. Physiol. 1894; 16: 159-318.
  3. Brengelmann G. L. Counterpoint: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is not correct. J. Appl. Physiol. 2006; 101: 1525-26.
  4. Buhre W., Weyland A., Schorn B., et al. Changes in central venous pressure and pulmonary capillary wedge pressure do not indicate changes in right and left heart volume in patients undergoing coronary artery bypass surgery. Eur. J. Anaesthiol. 1999; 16: 11-17.
  5. Calvin J. E., Driedger A. A., Sibbald W. J. The hemodynamic effect of rapid fluid infusion in critically ill patients. Surgery. 1981; 90: 61-76.
  6. Calvin J. E., Driedger A. A., Sibbald W. J. Does the pulmonary capillary wedge pressure predict left ventricular preload in critically ill patients? Crit. Care. Med. 1981; 9: 437-43.
  7. Cecconi M., Parsons A. K., Rhodes A. What is a fluid challenge? Curr. Opin. Crit. Care. 2011; 17: 290-95.
  8. Della Rocca G., Costa G. M., Coccia C., Pompei L., Di Marco P., Pietropaoli P. Preload index: pulmonary artery occlusion pressure versus intrathoracic blood volume monitoring during lung transplantation. Anesth. Analg. 2002; 95: 835-43.
  9. Den Hartog E. A., Versprille A., Jansen J. R. Systemic filling pressure in intact circulation determined on basis of aortic vs. central venous pressure relationships. Am. J. Physiol. 1994; 267: 2255-58.
  10. Feissel M., Michard F., Mangin I., Ruyer O., Faller J. P., Teboul J. L. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001; 119: 867-73.
  11. Guyton A. C. Basic Human Physiology: Normal Function and Mechanisms of Disease. Saunders, Philadelphia; 1971.
  12. Guyton A. C. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol. Rev. 1955; 35: 123-29.
  13. Guyton A. C., Lindsey A. W., Kaufmann B. N. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am. J. Physiol. 1955; 180: 463-8.
  14. Hiesmayr M., Jansen J. R., Versprille A. Effects of endotoxin infusion on mean systemic filling pressure and flow resistance to venous return. Pflugers. Arch. 1996; 431: 741-47.
  15. Hoeft A., Schorn B., Weyland A., et al. Bedside assessment of intravascular volume status in patients undergoing coronary bypass surgery. Anesthesiol. 1994; 81: 76-86.
  16. Jansen R., Maas J. J., Pinsky M. R. Bedside assessment of mean systemic filling pressure. Curr. Opin. Crit. Care. 2010; 16: 231-36.
  17. Jardin F., Valtier B., Beauchet A., Dubourg O., Bourdarias J. P. Invasive monitoring combined with two-dimensional echocardiographic study in septic shock. Intens. Care. Med. 1994; 20: 550-54.
  18. Kumar A., Anel R., Bunnell E., et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit. Care. Med. 2004; 32: 691-99.
  19. Lichtwarck-Aschoff M., Zeravik J., Pfeiffer U. J. Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intens. Care. Med. 1992; 18: 142-47.
  20. Maas J. J., Geerts B. F., Van den Berg P. C., Pinsky M. R., Jansen J. R. Assessment of venous return curve and mean systemic filling pressure in postoperative cardiac surgery patients. Crit. Care. Med. 2009; 37: 912-18.
  21. Magder S. Point: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J. Appl. Physiol. 2006; 101: 1523-25.
  22. Marik P. E., Baram M., Vahid В. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008; 134: 172-78.
  23. Marik P. E., Cavallazzi R., Vasu T., Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit. Care. Med. 2009; 37: 2642-47.
  24. Michard F., Alaya S., Zarka V., Bahloul M., Richard C., Teboul J. L. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest. 2003; 124: 1900-08.
  25. Michard F., Teboul J. L. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002; 121: 2000-08.
  26. Osman D., Ridel C., Ray P., et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit. Care. Med. 2007; 35: 64-8.
  27. Parkin W. G., Wright C. A. Three dimensional closed loop control of the human circulation. Int. J. Clin. Monit. Comput. 1991; 8: 35-42.
  28. Parkin W. G., Wright C. A., Bellomo R., Boyce N. Use of a mean systemic filling pressure analogue during the closed-loop control of fluid replacement in continuous hemodiafiltration. Crit. Care. 1994; 9: 124-33.
  29. Parkin W. G., Leaning M. S. Therapeutic control of the circulation. J. Clin. Monit. Comput. 2008; 22: 391-400.
  30. Patterson S. W., Piper H., Starling E. H. The regulation of the heart beat. J Physiol. 1914; 48: 465-513.
  31. Patterson S. W., Starling E. H. On the mechanical factors which determine the output of the ventricles. J. Physiol. 1914; 48: 357-79.
  32. Pellegrino V. A., Mudaliar Y., Gopalakrishnan M., et al. Computer based haemodynamic guidance system is effective and safe in management of postoperative cardiac surgery patients. Anaesth. Intens. Care. 2011; 39: 191-201.
  33. Pinsky M. R. Rationale for cardiovascular monitoring. Curr. Opin. Crit. Care. 2009; 9: 222-24.
  34. Reuter D. A., Felbinger T. W., Moerstedt K., et al. Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J. Cardiothorac. Vase. Anesth. 2002; 16: 191-95.
  35. Sakka S. G., Reinhart K., Meier-Hellmann A. Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intens. Care. Med. 1999; 25: 843-46.
  36. Schipke J. D., Heusch G., Sanii A. P., Gams E., Winter J. Static filling pressure in patients during induced ventricular fibrillation. Am. J. Physiol. H. Circ. Physiol. 2003; 285: 2510-15.
  37. Thys D. M., Hillel Z., Goldman M. E., Mindich B. P., Kaplan J. A. A comparison of hemodynamic indices derived by invasive monitoring and two-dimensional echocardiography. Anesthesiol. 1987; 67: 630-34.
  38. Tousignant C. P., Walsh F., Mazer C. D. The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth. Analg. 2000; 90: 351-55.
  39. Versprille A., Jansen J. R. Mean systemic filling pressure as a characteristic pressure for venous return. Pflugers. Arch. 1985; 405: 226-33.
  40. Wiesenack C., Prasser C., Keyl C., Rodig G. Assessment of intrathoracic blood volume as an indicator of cardiac preload: single transpulmonary thermodilution technique versus assessment of pressure preload parameters derived from a pulmonary artery catheter. J. Cardiothorac. Vase. Anesth. 2001; 15: 584-88.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Marchenko S.P., Khubulava G.G., Naumov A.B., Seliverstova A.A., Cipurdeeva N.D., Suvorov V.V., Nevmergitskaiy O.V., Alexandrovich U.S., Kulemin E.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 69634 от 15.03.2021 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies