Kyphoscoliotic spinal deformities associated with high risk of developing neurological deficits. Literature review
- Authors: Nazarenko A.G.1, Kuleshov A.A.1, Militsa I.M.1, Vetrile M.S.1, Lisyansky I.N.1, Makarov S.N.1
-
Affiliations:
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics
- Issue: Vol 31, No 3 (2024)
- Pages: 415-426
- Section: SCIENTIFIC REVIEWS
- Submitted: 12.03.2024
- Accepted: 08.04.2024
- Published: 17.07.2024
- URL: https://journals.eco-vector.com/0869-8678/article/view/629012
- DOI: https://doi.org/10.17816/vto629012
- ID: 629012
Cite item
Abstract
This is a literature review on kyphoscoliotic deformities with a high risk of severe primary neurological deficit. The review is integrative in nature and was conducted using medical literature databases and search resources such as PubMed, Google Scholar, and eLibrary. The following aspects are covered: the etiology and pathogenesis of neurological deficits caused by the natural progression of deformities, the main principles, and directions of surgical treatment for neurologically complicated spinal deformities. The scientific literature describes the primary mechanisms of neurological deficit development: mechanical compression and traction of the spinal cord, as well as impaired circulation at the apex of the deformity. Surgical methods for treating neurologically complicated kyphotic and scoliotic deformities have evolved with advancements in spinal instrumentation and approaches. In the first half of the 20th century, various spinal canal decompression methods were described, including laminectomy, costotransversectomy, spinal cord mobilization, and spinal canal remodeling. In the second half of the 20th century, the development and active use of spinal instrumentation (sublaminar hooks, pedicle screws) enabled simultaneous decompression, fixation, stabilization, and correction of spinal deformities. Combining different stabilization and deformity correction methods with concurrent spinal canal decompression creates the conditions for restoring spinal cord function, leading to a regression of neurological deficits and preventing severe patient disability.
Keywords
Full Text

About the authors
Anton G. Nazarenko
N.N. Priorov National Medical Research Center of Traumatology and Orthopedics
Email: nazarenkoag@cito-priorov.ru
ORCID iD: 0000-0003-1314-2887
SPIN-code: 1402-5186
MD, Dr. Sci. (Medicine), professor of RAS
Russian Federation, 10 Priorova str., 127299 MoscowAlexander A. Kuleshov
N.N. Priorov National Medical Research Center of Traumatology and Orthopedics
Email: cito-spine@mail.ru
ORCID iD: 0000-0002-9526-8274
SPIN-code: 7052-0220
MD, Dr. Sci. (Medicine)
Russian Federation, 10 Priorova str., 127299 MoscowIgor M. Militsa
N.N. Priorov National Medical Research Center of Traumatology and Orthopedics
Author for correspondence.
Email: igor.milica@mail.ru
ORCID iD: 0009-0005-9832-316X
SPIN-code: 4015-8113
Russian Federation, 10 Priorova str., 127299 Moscow
Marchel S. Vetrile
N.N. Priorov National Medical Research Center of Traumatology and Orthopedics
Email: vetrilams@cito-priorov.ru
ORCID iD: 0000-0001-6689-5220
SPIN-code: 9690-5117
MD, Cand. Sci. (Medicine)
Russian Federation, 10 Priorova str., 127299 MoscowIgor N. Lisyansky
N.N. Priorov National Medical Research Center of Traumatology and Orthopedics
Email: lisigornik@list.ru
ORCID iD: 0000-0002-2479-4381
SPIN-code: 9845-1251
MD, Cand. Sci. (Medicine)
Russian Federation, 10 Priorova str., 127299 MoscowSergey N. Makarov
N.N. Priorov National Medical Research Center of Traumatology and Orthopedics
Email: moscow.makarov@gmail.com
ORCID iD: 0000-0003-0406-1997
SPIN-code: 2767-2429
MD, Cand. Sci. (Medicine)
Russian Federation, 10 Priorova str., 127299 MoscowReferences
- Papaliodis DN, Bonanni PG, Roberts TT, et al. Computer assisted Cobb angle measurements: A novel algorithm. International Journal of Spine Surgery. 2017;11(3):167–172. doi: 10.14444/4021
- Goel SA, Neshar AM, Chhabra HS. A rare case of surgically managed multiple congenital thoraco-lumbar and lumbar block vertebrae with kypho-scoliosis and adjacent segment disease with myelopathy in a young female. Journal of Clinical Orthopaedics and Trauma. 2020;11(2):291–294. doi: 10.1016/j.jcot.2019.04.017
- Sugimoto Y, Ito Y, Tanaka M, et al. Cervical cord injury in patients with ankylosed spines: progressive paraplegia in two patients after posterior fusion without decompression. Spine. 2009;34(23):E861–3. doi: 10.1097/BRS.0b013e3181bb89fc
- Winter RB, Moe JH, Wang JF. Congenital kyphosis: its natural history and treatment as observed in a study of one hundred and thirty patients. JBJS. 1973;55(2): 223–274.
- McMaster MJ, Singh H. Natural history of congenital kyphosis and kyphoscoliosis. A study of one hundred and twelve patients. The Journal of bone and joint surgery. American volume. 1999;81(10):1367–1383. doi: 10.2106/00004623-199910000-00002
- Ulrich EV, Mushkin AYu, Rubin AV. Congenital spinal deformities in children: prognosis of epidemiology and management tactics. Hirurgiya pozvonochnika. 2009;(2):55–61. doi: 10.14531/ss2009.2.55-61
- Singh K, Samartzis D, An HS. Neurofibromatosis type I with severe dystrophic kyphoscoliosis and its operative management via a simultaneous anterior-posterior approach: A case report and review of the literature. Spine Journal. 2005;5(4):461–466.
- Kleinberg S, Kaplan A. Scoliosis complicated by paraplegia. J Bone Joint Surg Am. 1952;34-A(1):162–7.
- Maxwell JA, Kahn EA. Spinal cord traction producing an ascending, reversible, neurological deficit. Case Report. 1969;(31):459–461.
- Maxwell AKE. Spinal cord traction producing an ascending, reversible, neurological deficit. Case report. Verhandlungen der Anatomischen Gesellschaft. 1967;(115):49–69.
- Dommisse G. The blood supply of the spinal cord. A critical vascular zone in spinal surgery. J Bone Joint Surg Br. 1974;56(2):225–35.
- Breig A, Braxton V. Biomechanics of the central nervous system: some basic normal and pathologic phenomena. Stockholm: Almqvist & Wiksell; 1960. 183 р.
- Mironov SP, Vetrile ST, Natsvlishvili ZG, Morozov AK, Krupatkin AI. Assessment of the features of spinal circulation, microcirculation in the membranes of the spinal cord and neurovegetative regulation in scoliosis. Hirurgiya pozvonochnika. 2006;(3):38–48. doi: 10.14531/SS2006.3.38-48
- Pilcher JE. The Surgery of the Brain and Spinal Cord. Annals of surgery. 1888;8(4):261–283. doi: 10.1097/00000658-188807000-00124
- Ménard DV. Étude pratique sur le mal de Pott, par le Dr V. Ménard... Paris: Masson; 1900.
- Ahlgren BD, Herkowitz HN. A modified posterolateral approach to the thoracic spine. Journal of spinal disorders. 1995;8(1):69–75.
- Lonstein JE, Winter RB, Moe JH, et al. Neurologic deficits secondary to spinal deformity: A review of the literature and report of 43 cases. Spine. 1980;5(4):331–355. doi: 10.1097/00007632-198007000-00007
- Hyndman OR. Transplantation of the spinal cord; The problem of kyphoscoliosis with cord sign. Surg Gynec Obstet. 1947;84(4):460–464.
- Love JG. Transplantation of the spinal cord for the relief of paraplegia. AMA Archives of Surgery. 1956;73(5):757–763. doi: 10.1001/archsurg.1956.01280050025006
- Barber JB, Epps CH. Antero-lateral transposition of the spinal cord for paraparesis due to congenital scoliosis. Journal of the National Medical Association. 1968;60(3):169–72.
- Cantore GP, Ciappetta P, Costanzo G, Raco A, Salvati M. Neurological deficits secondary to spinal deformities: their treatment and results in 13 patients. European neurology. 1989;29(4):181–185. doi: 10.1159/000116407
- Lenke LG, Newton PO, Sucato DJ, et al. Complications after 147 consecutive vertebral column resections for severe pediatric spinal deformity: A multicenter analysis. Spine. 2013;38(2):119–132. doi: 10.1097/BRS.0b013e318269fab1
- McKenzie KG, Dewar FP. Scoliosis with paraplegia. The Journal of Bone and Joint Surgery. British volume. 1949;31В(2):162–174.
- Shenouda EF, Nelson IW, Nelson RJ. Anterior transvertebral transposition of the spinal cord for the relief of paraplegia associated with congenital cervicothoracic kyphoscoliosis: Technical note. Journal of Neurosurgery: Spine. 2006;5(4):374–379. doi: 10.3171/spi.2006.5.4.374
- Loniewski de Ninina X, Dubousset JF. Place de la traction et du temps antérieur dans le traitement chirurgical des cyphoses et cypho-scolioses avec l’instrumentation «C.D.» chez l’enfant. International Orthopaedics. 1994;18(4):195–203. doi: 10.1007/BF00188322
- Novikov VV, Vasyura AS, Lebedeva MN, Mikhaylovskiy MV, Sadovoy MA. Surgical management of neurologically complicated kyphoscoliosis using transposition of the spinal cord: Case report. International Journal of Surgery Case Reports. 2016;27:13–17. doi: 10.1016/j.ijscr.2016.07.037
- Delecrin J, et al. Various mechanisms of spinal cord injury during scoliosis surgery. In: Neurological Complications of Spinal Surgery. Proceedings of the 11th GICD Congress. Arcachon, France; 1994. Р. 13–14.
- Kawahara N, Tomita K, Baba H, et al. Closing-opening wedge osteotomy to correct angular kyphotic deformity by a single posterior approach. Spine. 2001;26(4):391–402. doi: 10.1097/00007632-200102150-00016
- Shimode M, Kojima T, Sowa K. Spinal wedge osteotomy by a single posterior approach for correction of severe and rigid kyphosis or kyphoscoliosis. Spine. 2002;27(20):2260–2267. doi: 10.1097/00007632-200210150-00015
- Shono Y, Abumi K, Kaneda K. One-stage posterior hemivertebra resection and correction using segmental posterior instrumentation. Spine. 2001;26(7):752–757. doi: 10.1097/00007632-200104010-00011
- Leatherman KD. The management of rigid spinal curves. Clinical Orthopaedics and Related Research®. 1973;(93):215–224. doi: 10.1097/00003086-197306000-00021
- Roberson JR, Whitesides TE Jr. Surgical reconstruction of late post-traumatic thoracolumbar kyphosis. Spine. 1985;10(4):307–312. doi: 10.1097/00007632-198505000-00003
- Smith JT, Gollogly S, Dunn HK. Simultaneous anterior-posterior approach through a costotransversectomy for the treatment of congenital kyphosis and acquired kyphoscoliotic deformities. Journal of Bone and Joint Surgery. 2005;87(10):2281–2289. doi: 10.2106/JBJS.D.01795
- Song KS, Chang BS, Yeom JS, et al. Surgical treatment of severe angular kyphosis with myelopathy: Anterior and posterior approach with pedicle screw instrumentation. Spine. 2008;33(11):1229–1235. doi: 10.1097/BRS.0b013e31817152b3
- Chen PC, Chang CC, Chen HT, et al. The Accuracy of 3D Printing Assistance in the Spinal Deformity Surgery. BioMed Research International. 2019:7196528. doi: 10.1155/2019/7196528
- Ishida K, Aota Y, Uesugi M, et al. Late Onset of Thoracic Myelopathy with Type 2 Congenital Deformity: A Case Report. The Open Spine Journal. 2010;2:21–23.
- Lenke LG, Sides BA, Koester LA, Hensley M, Blanke KM. Vertebral column resection for the treatment of severe spinal deformity. Clinical Orthopaedics and Related Research. 2010;468(3):687–699. doi: 10.1007/s11999-009-1037-x
- Schwab F, Blondel B, Chay E, et al. The comprehensive anatomical spinal osteotomy classification. Neurosurgery. 2015;76(1 suppl):S33–S41. doi: 10.1227/NEU.0000000000000182o
- Shi B, Shi B, Liu D, et al. Scoliosis research society-schwab grade 6 osteotomy for severe congenital angular kyphoscoliosis: An analysis of 17 cases with a minimum 2-year follow-up. Neurosurgery. 2020;87(5):925–930. doi: 10.1093/neuros/nyaa055
- Chang K-W, Chen YY, Lin CC, Hsu HL, Pai KC. Apical lordosating osteotomy and minimal segment fixation for the treatment of thoracic or thoracolumbar osteoporotic kyphosis. Spine. 2005;30(14):1674–1681. doi: 10.1097/01.brs.0000170450.77554.bc
- Wang Y, Zhang Y, Zhang X, et al. A single posterior approach for multilevel modified vertebral column resection in adults with severe rigid congenital kyphoscoliosis: a retrospective study of 13 cases. European Spine Journal. 2008;17(3):361–372. doi: 10.1007/s00586-007-0566-9
- Chen Z, Zeng Y, Li W, et al. Apical segmental resection osteotomy with dual axial rotation corrective technique for severe focal kyphosis of the thoracolumbar spine. Journal of Neurosurgery: Spine. 2011;14(1):106–113. doi: 10.3171/2010.9.SPINE10257
- Chang K-W, Cheng CW, Chen HC, Chang KI, Chen TC. Closing-opening wedge osteotomy for the treatment of sagittal imbalance. Spine. 2008;33(13):1470–1477. doi: 10.1097/BRS.0b013e3181753bcd
- Patel A, Ruparel S, Dusad T, Mehta G, Kundnani V. Posterior-approach single-level apical spinal osteotomy in pediatric patients for severe rigid kyphoscoliosis: Long-term clinical and radiological outcomes. Journal of Neurosurgery: Pediatrics. 2018;21(6):606–614. doi: 10.3171/2017.12.PEDS17404
- Akazawa T, Kotani T, Sakuma T, Nemoto T, Minami S. Rod fracture after long construct fusion for spinal deformity: clinical and radiographic risk factors Journal of Orthopaedic Science. 2013;18(6):926–931. doi: 10.1007/s00776-013-0464-4
- Auerbach JD, Lenke LG, Bridwell KH, et al. Major complications and comparison between 3-column osteotomy techniques in 105 consecutive spinal deformity procedures. Spine. 2012;37(14):1198–1210. doi: 10.1097/BRS.0b013e31824fffde
- Smith JS, Shaffrey CI, Ames CP, et al. Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery. 2012;71(4):862–868. doi: 10.1227/NEU.0b013e3182672aab
- Smith JS, Shaffrey E, Klineberg E, et al. Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. Journal of Neurosurgery: Spine. 2014;21(6):994–1003. doi: 10.3171/2014.9.SPINE131176
- Wang F, et al. Risk factors for rod fracture in patients with severe kyphoscoliosis following posterior vertebral column resection. Chinese Journal of Orthopaedics. 2012:946–950.
- Kuleshov AA, Vetrile MS, Lisyansky IN, Makarov SN, Sokolova TV. Surgical treatment of a patient with congenital spinal deformity, aplasia of the roots of the arches of the thoracic and lumbar vertebrae, spinal compression syndrome. Hirurgiya pozvonochnika. 2016;13(3):41–48. doi: 10.14531/ss2016.3.41-48
Supplementary files
