Pulmonary artery thrombosis prophylaxis and treatment in clinical practice and experiment

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The effectiveness of anticoagulant therapy in the prevention and treatment of pulmonary artery thrombosis and the possibility of anti-inflammatory therapy in preventing this complication in clinical practice and experiments were assessed. Data from patients with a new coronavirus infection and those suffering from urgent noninfectious pathology with confirmed pulmonary artery thrombosis were retrospectively analyzed. The outcomes of anticoagulant therapy and anticoagulant therapy combined with glucocorticoid and/or anticytokine drugs were assessed. Histological preparations of the lung vessels of patients were examined. Using an experimental model of rats with induced thrombosis of the posterior vena cava, changes in the pulmonary artery branches were assessed in the main group administered with edible mussel (Mytilus edulis) hydrolyzate and the control group given a physiological solution. No statistically significant relationship was found between the therapeutic, intermediate, and preventive anticoagulant therapy regimens and mortality, changes in lung dynamics, and D-dimer levels in 313 patients with new coronavirus infection. No predominance of any anticoagulant therapy regimen used was found among deceased patients. Thirty-nine patients were treated with glucocorticoid and/or anticytokine drugs in the presence of anticoagulant therapy. No statistically significant relationship in the onset of thrombotic complications was found between the groups receiving therapy with glucocorticoid and anticytokine drugs. No differences were noted in the drug-induced pathomorphosis of the wall of the pulmonary artery branches in the group receiving anticoagulant therapy or in the group receiving a combination of anticoagulant therapy and glucocorticoid and/or anticytokine drugs. Pulmonary artery thrombosis developed in all 19 patients suffering from urgent noninfectious pathology, 11 of whom were under anticoagulant therapy. In 12 of 15 rats in the control group with thrombosis of the posterior vena cava, blood clots were found in the lumen of the pulmonary artery branches. In 14 rats of the main group administered M. edulis hydrolyzate, no blood clots were found in the pulmonary artery branches. Thus, the systemic effects of anticoagulant therapy were offset by the local prothrombotic effects of the vascular wall caused by inflammation. Glucocorticoid and anticytokine drugs did not affect inflammatory changes in the vascular wall and did not prevent pulmonary artery thrombosis. The introduction of M. edulis in the experiment prevented pulmonary artery thrombosis in the presence of posterior vena cava thrombosis, which indicates a promising direction in the search for pathogenetic prevention of this complication.

Full Text

Restricted Access

About the authors

Olga Ya. Porembskaya

North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: porembskaya@yandex.ru
ORCID iD: 0000-0003-3537-7409
SPIN-code: 9775-1057

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Kirill V. Lobastov

Russian National Research Medical University named after N.I. Pirogov; City Clinical Hospital No. 24

Email: lobastov_kv@mail.ru
ORCID iD: 0000-0002-5358-7218
SPIN-code: 2313-0691

MD, Cand. Sci. (Med.)

Russian Federation, Moscow; Moscow

Sergey N. Tsaplin

Russian National Research Medical University named after N.I. Pirogov; Clinical Hospital No. 1 (Volynskaya)

Email: tsaplin-sergey@rambler.ru
ORCID iD: 0000-0003-1567-1328
SPIN-code: 8827-1385

MD, Cand. Sci. (Med.)

Russian Federation, Moscow; Moscow

Olga V. Pashovkina

Clinical Hospital No. 1 (Volynskaya)

Email: dr.pashovkina@mail.ru
ORCID iD: 0000-0001-6955-4595
SPIN-code: 3448-9764

pathologist

Russian Federation, Moscow

Victoria А. Ilina

Saint Petersburg Research Institute of Emergency Medicine named after I.I. Dzhanelidze

Email: profkomniisp@mail.ru
ORCID iD: 0000-0001-7336-8146
SPIN-code: 8934-1156

MD, Dr. Sci. (Med.)

Russian Federation, Saint Petersburg

Eleonora A. Starikova

Institute of Experimental Medicine

Email: starickova@yandex.ru
ORCID iD: 0000-0002-9687-7434
SPIN-code: 6488-4036

MD, Cand. Sci. (Biol.)

Russian Federation, Saint Petersburg

Janet T. Mammedova

Institute of Experimental Medicine

Email: jennet_m@mail.ru
ORCID iD: 0000-0003-4381-6993
SPIN-code: 1418-6373

researcher

Russian Federation, Saint Petersburg

Vsevolod A. Tsinserling

National Medical Research Center named after V.A. Almazova

Email: Tsinzerling_VA@almazovcentre.ru
ORCID iD: 0000-0001-7361-1927
SPIN-code: 4601-1482

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Yana G. Toropova

National Medical Research Center named after V.A. Almazova

Email: yana.toropova@mail.ru
ORCID iD: 0000-0003-1629-7868
SPIN-code: 2020-4213

MD, Cand. Sci. (Biol.)

Russian Federation, Saint Petersburg

Maxim I. Galchenko

State Agrarian University

Email: maxim.galchenko@gmail.com
ORCID iD: 0000-0002-5476-6058
SPIN-code: 8858-2916

senior lecturer

Russian Federation, Saint Petersburg

Leonid A. Laberko

Russian National Research Medical University named after N.I. Pirogov; City Clinical Hospital No. 24

Email: laberko@list.ru
ORCID iD: 0000-0002-5542-1502
SPIN-code: 8941-5729

MD, Dr. Sci. (Med.), professor

Russian Federation, Moscow; Moscow

Vyacheslav N. Kravchuk

North-Western State Medical University named after I.I. Mechnikov

Email: kravchuk9@yandex.ru
ORCID iD: 0000-0002-6337-104X
SPIN-code: 4227-2846

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Sergey A. Saiganov

North-Western State Medical University named after I.I. Mechnikov

Email: sergey.sayganov@szgmu.ru
ORCID iD: 0000-0001-8325-1937
SPIN-code: 2174-6400

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

References

  1. Khan F, Rahman A, Carrier M, et al. Long term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: Systematic review and meta-analysis. BMJ. 2019;366:4363. doi: 10.1136/bmj.l4363
  2. Kearon C, Gent M, Hirsh J, et al. A comparison of three months of anticoagulation with extended anticoagulation for a first episode of idiopathic venous thromboembolism. N Engl J Med. 1999;340(12):901–907. doi: 10.1056/NEJM199903253401201
  3. Ten Cate V, Prochaska JH, Schulz A, et al. Clinical profile and outcome of isolated pulmonary embolism: a systematic review and meta-analysis. EClinicalMedicine. 2023;59:101973. doi: 10.1016/j.eclinm.2023.101973
  4. Konstantinides SV, Meyer G, Bueno H, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS). Eur Heart J. 2020;41(4):543–603. doi: 10.1093/eurheartj/ehz405
  5. Ortel TL, Neumann I, Ageno W, et al. American society of hematology 2020 guidelines for management of venous thromboembolism: Treatment of deep vein thrombosis and pulmonary embolism. Blood Adv. 2020;4(19):4693–4738. doi: 10.1182/bloodadvances.2020001830
  6. Seliverstov EI, Lobastov KV, Ilyukhin EA, et al. Prevention, diagnostics and treatment of deep vein thrombosis. Russian experts consensus. Flebologiya. 2023;17(3):152–296. EDN: RHOTOW doi: 10.17116/flebo202317031152
  7. Porembskaya OYa, Kravchuk VN, Lobastov KV, et al. Pulmonary artery thrombosis: strategy of anticoagulation. Pirogov Russian Journal of Surgery. 2021;(11):76–82. EDN: PABNVT doi: 10.17116/hirurgia202111176
  8. Nguyen ET, Hague C, Manos D, et al. Canadian Society of Thoracic Radiology/Canadian Association of Radiologists best practice guidance for investigation of acute pulmonary embolism, Part 2: Technical issues and interpretation pitfalls. Can Assoc Radiol J. 2022;73(1):203–213. doi: 10.1177/08465371211000739
  9. Nguyen GC, Bernstein CN, Bitton A, et al. Consensus statements on the risk, prevention, and treatment of venous thromboembolism in inflammatory bowel disease: Canadian association of gastroenterology. Gastroenterology. 2014;146(3):835–848.e6. doi: 10.1053/j.gastro.2014.01.042
  10. Lobastov KV, Stepanov EA, Tsaplin SN, et al. Efficacy and safety of increased doses of anticoagulants in COVID-19 patients: A systematic review and meta-analysis. Surgeon. 2022;(1-2):50–65. EDN: FHQTYB doi: 10.33920/med-15-2201-05
  11. Menezes RG, Rizwan T, Saad Ali S, et al. Postmortem findings in COVID-19 fatalities: A systematic review of current evidence. Leg Med (Tokyo). 2022;54:102001. doi: 10.1016/j.legalmed.2021.102001
  12. Porembskaya OYa, Kravchuk VN, Galchenko MI, et al. Pulmonary vascular thrombosis in COVID-19: clinical and morphological parallels. Rational pharmacotherapy in cardiology. 2022;18(4): 376–384. EDN: HTTTBO doi: 10.20996/1819-6446-2022-08-01
  13. Porembskaya O, Toropova Y, Tomson V, et al. Pulmonary artery thrombosis: A diagnosis that strives for its independence. Int J Mol Sci. 2020;21(14):5086. doi: 10.3390/ijms21145086
  14. von Brühl M-L, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–835. doi: 10.1084/jem.20112322
  15. Downing LJ, Wakefield TW, Strieter RM, et al. Anti-P-selectin antibody decreases inflammation and thrombus formation in venous thrombosis. J Vasc Surg. 1997;25(5):816–828. doi: 10.1016/S0741-5214(97)70211-8
  16. Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–144. doi: 10.1111/J.1538-7836.2011.04544.X
  17. Meng D, Luo M, Liu B. The role of CLEC-2 and its ligands in thromboinflammation. Front Immunol. 2021;12:688643. doi: 10.3389/FIMMU.2021.688643/BIBTEX
  18. Cherpokova D, Jouvene CC, Libreros S, et al. Resolvin D4 attenuates the severity of pathological thrombosis in mice. Blood. 2019;134(17):1458–1468. doi: 10.1182/BLOOD.2018886317
  19. Stark K, Philippi V, Stockhausen S, et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood. 2016;128(20):2435–2449. doi: 10.1182/blood-2016-04-710632
  20. Weiss EJ, Hamilton JR, Lease KE, Coughlin SR. Protection against thrombosis in mice lacking PAR3. Blood. 2002;100(9):3240–3244. doi: 10.1182/blood-2002-05-1470
  21. Porembskaya O, Zinserling V, Tomson V, et al. Neutrophils mediate pulmonary artery thrombosis in situ. Int J Mol Sci. 2022;23(10):5829. doi: 10.3390/IJMS23105829
  22. Camprubí-Rimblas M, Tantinyà N, Bringué J, et al. Anticoagulant therapy in acute respiratory distress syndrome. Ann Transl Med. 2018;6(2):36. doi: 10.21037/atm.2018.01.08
  23. Spadaro S, Park M, Turrini C, et al. Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine. J Inflamm (Lond). 2019;16:1. doi: 10.1186/S12950-018-0202-Y
  24. Evans CE, Zhao Y-Y. Impact of thrombosis on pulmonary endothelial injury and repair following sepsis. Am J Physiol Lung Cell Mol Physiol. 2017;312(4):L441–L451. doi: 10.1152/AJPLUNG.00441.2016
  25. Starikova E, Mammedova J, Ozhiganova A, et al. Protective role of mytilus edulis hydrolysate in lipopolysaccharide-galactosamine acute liver injury. Front Pharmacol. 2021;12:667572. doi: 10.3389/FPHAR.2021.667572
  26. Kim Y-S, Ahn C-B, Je J-Y. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways. Food Chem. 2016;202:9–14. doi: 10.1016/J.FOODCHEM.2016.01.114
  27. Qiao M, Tu M, Wang Z, et al. Identification and antithrombotic activity of peptides from blue mussel (Mytilus edulis) protein. Int J Mol Sci. 2018;19(1):138. doi: 10.3390/ijms19010138
  28. Starikova EA, Mammedova JT, Porembskaya OYa, et al. Mytilus edulis hydrolysate enhances proliferation and protects endothelial cells against hypochlorous acid-induced oxidative stress. Medical academic journal. 2022;22(4):57–67. EDN: EAFIBR doi: 10.17816/MAJ114811
  29. Jung W-K, Kim S-K. Isolation and characterisation of an anticoagulant oligopeptide from blue mussel, Mytilus edulis. Food Chem. 2009;117(4):687–692. doi: 10.1016/J.FOODCHEM.2009.04.077
  30. Lendrum A, Fraser D, Slidders W, Henderson R. Studies on the character and staining of fibrin. J Clin Pathol. 1962;15(5):401–413. doi: 10.1136/jcp.15.5.401
  31. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089
  32. Akoglu H. User’s guide to correlation coefficients. Turk J Emerg Med. 2018;18(3):91–93. doi: 10.1016/j.tjem.2018.08.001
  33. Porembskaya O, Lobastov K, Pashovkina O, et al. Thrombosis of pulmonary vasculature despite anticoagulation and thrombolysis: The findings from seven autopsies. Thromb Update. 2020;1:100017. doi: 10.1016/j.tru.2020.100017
  34. Nuckton TJ, Alonso JA, Kallet RH, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346(17):1281–1286. doi: 10.1056/NEJMOA012835
  35. Robertson HT. Dead space: the physiology of wasted ventilation. Eur Respir J. 2015;45(6):1704–1716. doi: 10.1183/09031936.00137614
  36. Nicklas JM, Gordon AE, Henke PK. Resolution of deep venous thrombosis: Proposed immune paradigms. Int J Mol Sci. 2020;21(6):2080. doi: 10.3390/ijms21062080

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural changes in the wall of pulmonary artery branches in deceased patients with COVID-19: а — without glucocorticoid and anticytokine therapy; b — with glucocorticoid and/or anticytokine therapy; ФН — fibrinoid necrosis; ФЯ — fragmentation of nuclei; НЭ — necrosis of the endothelium; ФВ — fragmentation of collagen fibers. Hematoxylin and eosin staining, magnified × 400

Download (547KB)
3. Fig. 2. Branches of the pulmonary artery of rats: а — lungs of rats in the control group; b — lungs of rats in the main group administered with Mytilus edulis hydrolysate; ПС — vessel lumen; CC — vessel wall; Фиб — fibrin; Лей — wall and fibrin-walled leukocytes (indicated by arrows); СЭ — erythrocyte sludge. Coloring of MSB according to Lendrum. The scale range is 200 µm

Download (829KB)

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies