临床与实验中肺血栓的治疗与预防

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

本研究评估了抗凝疗法在预防和治疗肺动脉血栓形成方面的效果,以及抗炎疗法在临床实践和实验中预防这种并发症的可能性。回顾性分析了新型冠状病毒感染患者和确诊肺动脉血栓形成的急性非感染性病症患者的数据。评估了抗凝疗法和抗凝疗法联合糖皮质激素和/或抗细胞因子疗法的效果。对患者肺血管的组织学制备进行了研究。在诱导后腔静脉血栓形成的大鼠实验模型上,研究了在给研究组大鼠服用食用贻贝(Mytilus edulis)水解液和给对照组大鼠服用生理溶液的条件下,肺动脉分支的变化。在 313 名新型感染冠状病毒的患者中,抗凝治疗的治疗、中间和预防方案与死亡率、肺部变化动态以及D-二聚体水平没有统计学意义。在死亡患者中,也没有发现任何抗凝治疗方案占主导地位。39例患者在接受抗凝治疗的同时还接受了糖皮质激素和/或抗细胞因子药物治疗。糖皮质激素和抗细胞因子药物治疗与血栓并发症的发生之间没有明显的统计学意义。在抗凝治疗和抗凝治疗与糖皮质激素和/或抗细胞因子药物联合使用的情况下,药物诱发的肺动脉分支壁病变没有发现差异。所有19例急诊非感染性病理患者都出现了肺动脉血栓,其中11例是在抗凝治疗下发生的。在后腔静脉血栓形成对照组的 15只大鼠中,有 12只在肺动脉分支的管腔中发现了血栓。给研究组的14只大鼠注射食用贻贝水解液后,肺动脉分支中没有血栓形成。因此,抗凝疗法的全身效应被血管壁炎症引起的局部促血栓形成效应所抵消。糖皮质激素和抗细胞因子药物不会影响血管壁的炎症变化,对肺血栓形成无抑制作用。在实验中服用食用贻贝可预防后腔静脉血栓形成条件下的肺动脉血栓形成,这为寻找预防这种并发症的病因指明了一个有希望的方向。

全文:

受限制的访问

作者简介

Olga Ya. Porembskaya

North-Western State Medical University named after I.I. Mechnikov

编辑信件的主要联系方式.
Email: porembskaya@yandex.ru
ORCID iD: 0000-0003-3537-7409
SPIN 代码: 9775-1057

MD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Kirill V. Lobastov

Russian National Research Medical University named after N.I. Pirogov; City Clinical Hospital No. 24

Email: lobastov_kv@mail.ru
ORCID iD: 0000-0002-5358-7218
SPIN 代码: 2313-0691

MD, Cand. Sci. (Med.)

俄罗斯联邦, Moscow; Moscow

Sergey N. Tsaplin

Russian National Research Medical University named after N.I. Pirogov; Clinical Hospital No. 1 (Volynskaya)

Email: tsaplin-sergey@rambler.ru
ORCID iD: 0000-0003-1567-1328
SPIN 代码: 8827-1385

MD, Cand. Sci. (Med.)

俄罗斯联邦, Moscow; Moscow

Olga V. Pashovkina

Clinical Hospital No. 1 (Volynskaya)

Email: dr.pashovkina@mail.ru
ORCID iD: 0000-0001-6955-4595
SPIN 代码: 3448-9764

pathologist

俄罗斯联邦, Moscow

Victoria А. Ilina

Saint Petersburg Research Institute of Emergency Medicine named after I.I. Dzhanelidze

Email: profkomniisp@mail.ru
ORCID iD: 0000-0001-7336-8146
SPIN 代码: 8934-1156

MD, Dr. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Eleonora A. Starikova

Institute of Experimental Medicine

Email: starickova@yandex.ru
ORCID iD: 0000-0002-9687-7434
SPIN 代码: 6488-4036

MD, Cand. Sci. (Biol.)

俄罗斯联邦, Saint Petersburg

Janet T. Mammedova

Institute of Experimental Medicine

Email: jennet_m@mail.ru
ORCID iD: 0000-0003-4381-6993
SPIN 代码: 1418-6373

researcher

俄罗斯联邦, Saint Petersburg

Vsevolod A. Tsinserling

National Medical Research Center named after V.A. Almazova

Email: Tsinzerling_VA@almazovcentre.ru
ORCID iD: 0000-0001-7361-1927
SPIN 代码: 4601-1482

MD, Dr. Sci. (Med.), professor

俄罗斯联邦, Saint Petersburg

Yana G. Toropova

National Medical Research Center named after V.A. Almazova

Email: yana.toropova@mail.ru
ORCID iD: 0000-0003-1629-7868
SPIN 代码: 2020-4213

MD, Cand. Sci. (Biol.)

俄罗斯联邦, Saint Petersburg

Maxim I. Galchenko

State Agrarian University

Email: maxim.galchenko@gmail.com
ORCID iD: 0000-0002-5476-6058
SPIN 代码: 8858-2916

senior lecturer

俄罗斯联邦, Saint Petersburg

Leonid A. Laberko

Russian National Research Medical University named after N.I. Pirogov; City Clinical Hospital No. 24

Email: laberko@list.ru
ORCID iD: 0000-0002-5542-1502
SPIN 代码: 8941-5729

MD, Dr. Sci. (Med.), professor

俄罗斯联邦, Moscow; Moscow

Vyacheslav N. Kravchuk

North-Western State Medical University named after I.I. Mechnikov

Email: kravchuk9@yandex.ru
ORCID iD: 0000-0002-6337-104X
SPIN 代码: 4227-2846

MD, Dr. Sci. (Med.), professor

俄罗斯联邦, Saint Petersburg

Sergey A. Saiganov

North-Western State Medical University named after I.I. Mechnikov

Email: sergey.sayganov@szgmu.ru
ORCID iD: 0000-0001-8325-1937
SPIN 代码: 2174-6400

MD, Dr. Sci. (Med.), professor

俄罗斯联邦, Saint Petersburg

参考

  1. Khan F, Rahman A, Carrier M, et al. Long term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: Systematic review and meta-analysis. BMJ. 2019;366:4363. doi: 10.1136/bmj.l4363
  2. Kearon C, Gent M, Hirsh J, et al. A comparison of three months of anticoagulation with extended anticoagulation for a first episode of idiopathic venous thromboembolism. N Engl J Med. 1999;340(12):901–907. doi: 10.1056/NEJM199903253401201
  3. Ten Cate V, Prochaska JH, Schulz A, et al. Clinical profile and outcome of isolated pulmonary embolism: a systematic review and meta-analysis. EClinicalMedicine. 2023;59:101973. doi: 10.1016/j.eclinm.2023.101973
  4. Konstantinides SV, Meyer G, Bueno H, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS). Eur Heart J. 2020;41(4):543–603. doi: 10.1093/eurheartj/ehz405
  5. Ortel TL, Neumann I, Ageno W, et al. American society of hematology 2020 guidelines for management of venous thromboembolism: Treatment of deep vein thrombosis and pulmonary embolism. Blood Adv. 2020;4(19):4693–4738. doi: 10.1182/bloodadvances.2020001830
  6. Seliverstov EI, Lobastov KV, Ilyukhin EA, et al. Prevention, diagnostics and treatment of deep vein thrombosis. Russian experts consensus. Flebologiya. 2023;17(3):152–296. EDN: RHOTOW doi: 10.17116/flebo202317031152
  7. Porembskaya OYa, Kravchuk VN, Lobastov KV, et al. Pulmonary artery thrombosis: strategy of anticoagulation. Pirogov Russian Journal of Surgery. 2021;(11):76–82. EDN: PABNVT doi: 10.17116/hirurgia202111176
  8. Nguyen ET, Hague C, Manos D, et al. Canadian Society of Thoracic Radiology/Canadian Association of Radiologists best practice guidance for investigation of acute pulmonary embolism, Part 2: Technical issues and interpretation pitfalls. Can Assoc Radiol J. 2022;73(1):203–213. doi: 10.1177/08465371211000739
  9. Nguyen GC, Bernstein CN, Bitton A, et al. Consensus statements on the risk, prevention, and treatment of venous thromboembolism in inflammatory bowel disease: Canadian association of gastroenterology. Gastroenterology. 2014;146(3):835–848.e6. doi: 10.1053/j.gastro.2014.01.042
  10. Lobastov KV, Stepanov EA, Tsaplin SN, et al. Efficacy and safety of increased doses of anticoagulants in COVID-19 patients: A systematic review and meta-analysis. Surgeon. 2022;(1-2):50–65. EDN: FHQTYB doi: 10.33920/med-15-2201-05
  11. Menezes RG, Rizwan T, Saad Ali S, et al. Postmortem findings in COVID-19 fatalities: A systematic review of current evidence. Leg Med (Tokyo). 2022;54:102001. doi: 10.1016/j.legalmed.2021.102001
  12. Porembskaya OYa, Kravchuk VN, Galchenko MI, et al. Pulmonary vascular thrombosis in COVID-19: clinical and morphological parallels. Rational pharmacotherapy in cardiology. 2022;18(4): 376–384. EDN: HTTTBO doi: 10.20996/1819-6446-2022-08-01
  13. Porembskaya O, Toropova Y, Tomson V, et al. Pulmonary artery thrombosis: A diagnosis that strives for its independence. Int J Mol Sci. 2020;21(14):5086. doi: 10.3390/ijms21145086
  14. von Brühl M-L, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–835. doi: 10.1084/jem.20112322
  15. Downing LJ, Wakefield TW, Strieter RM, et al. Anti-P-selectin antibody decreases inflammation and thrombus formation in venous thrombosis. J Vasc Surg. 1997;25(5):816–828. doi: 10.1016/S0741-5214(97)70211-8
  16. Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–144. doi: 10.1111/J.1538-7836.2011.04544.X
  17. Meng D, Luo M, Liu B. The role of CLEC-2 and its ligands in thromboinflammation. Front Immunol. 2021;12:688643. doi: 10.3389/FIMMU.2021.688643/BIBTEX
  18. Cherpokova D, Jouvene CC, Libreros S, et al. Resolvin D4 attenuates the severity of pathological thrombosis in mice. Blood. 2019;134(17):1458–1468. doi: 10.1182/BLOOD.2018886317
  19. Stark K, Philippi V, Stockhausen S, et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood. 2016;128(20):2435–2449. doi: 10.1182/blood-2016-04-710632
  20. Weiss EJ, Hamilton JR, Lease KE, Coughlin SR. Protection against thrombosis in mice lacking PAR3. Blood. 2002;100(9):3240–3244. doi: 10.1182/blood-2002-05-1470
  21. Porembskaya O, Zinserling V, Tomson V, et al. Neutrophils mediate pulmonary artery thrombosis in situ. Int J Mol Sci. 2022;23(10):5829. doi: 10.3390/IJMS23105829
  22. Camprubí-Rimblas M, Tantinyà N, Bringué J, et al. Anticoagulant therapy in acute respiratory distress syndrome. Ann Transl Med. 2018;6(2):36. doi: 10.21037/atm.2018.01.08
  23. Spadaro S, Park M, Turrini C, et al. Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine. J Inflamm (Lond). 2019;16:1. doi: 10.1186/S12950-018-0202-Y
  24. Evans CE, Zhao Y-Y. Impact of thrombosis on pulmonary endothelial injury and repair following sepsis. Am J Physiol Lung Cell Mol Physiol. 2017;312(4):L441–L451. doi: 10.1152/AJPLUNG.00441.2016
  25. Starikova E, Mammedova J, Ozhiganova A, et al. Protective role of mytilus edulis hydrolysate in lipopolysaccharide-galactosamine acute liver injury. Front Pharmacol. 2021;12:667572. doi: 10.3389/FPHAR.2021.667572
  26. Kim Y-S, Ahn C-B, Je J-Y. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways. Food Chem. 2016;202:9–14. doi: 10.1016/J.FOODCHEM.2016.01.114
  27. Qiao M, Tu M, Wang Z, et al. Identification and antithrombotic activity of peptides from blue mussel (Mytilus edulis) protein. Int J Mol Sci. 2018;19(1):138. doi: 10.3390/ijms19010138
  28. Starikova EA, Mammedova JT, Porembskaya OYa, et al. Mytilus edulis hydrolysate enhances proliferation and protects endothelial cells against hypochlorous acid-induced oxidative stress. Medical academic journal. 2022;22(4):57–67. EDN: EAFIBR doi: 10.17816/MAJ114811
  29. Jung W-K, Kim S-K. Isolation and characterisation of an anticoagulant oligopeptide from blue mussel, Mytilus edulis. Food Chem. 2009;117(4):687–692. doi: 10.1016/J.FOODCHEM.2009.04.077
  30. Lendrum A, Fraser D, Slidders W, Henderson R. Studies on the character and staining of fibrin. J Clin Pathol. 1962;15(5):401–413. doi: 10.1136/jcp.15.5.401
  31. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089
  32. Akoglu H. User’s guide to correlation coefficients. Turk J Emerg Med. 2018;18(3):91–93. doi: 10.1016/j.tjem.2018.08.001
  33. Porembskaya O, Lobastov K, Pashovkina O, et al. Thrombosis of pulmonary vasculature despite anticoagulation and thrombolysis: The findings from seven autopsies. Thromb Update. 2020;1:100017. doi: 10.1016/j.tru.2020.100017
  34. Nuckton TJ, Alonso JA, Kallet RH, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346(17):1281–1286. doi: 10.1056/NEJMOA012835
  35. Robertson HT. Dead space: the physiology of wasted ventilation. Eur Respir J. 2015;45(6):1704–1716. doi: 10.1183/09031936.00137614
  36. Nicklas JM, Gordon AE, Henke PK. Resolution of deep venous thrombosis: Proposed immune paradigms. Int J Mol Sci. 2020;21(6):2080. doi: 10.3390/ijms21062080

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structural changes in the wall of pulmonary artery branches in deceased patients with COVID-19: а — without glucocorticoid and anticytokine therapy; b — with glucocorticoid and/or anticytokine therapy; ФН — fibrinoid necrosis; ФЯ — fragmentation of nuclei; НЭ — necrosis of the endothelium; ФВ — fragmentation of collagen fibers. Hematoxylin and eosin staining, magnified × 400

下载 (547KB)
3. Fig. 2. Branches of the pulmonary artery of rats: а — lungs of rats in the control group; b — lungs of rats in the main group administered with Mytilus edulis hydrolysate; ПС — vessel lumen; CC — vessel wall; Фиб — fibrin; Лей — wall and fibrin-walled leukocytes (indicated by arrows); СЭ — erythrocyte sludge. Coloring of MSB according to Lendrum. The scale range is 200 µm

下载 (829KB)

版权所有 © Eco-Vector, 2024

许可 URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


##common.cookie##