Intraoperative photodynamic therapy in the structure of complex treatment of patients suffering from recurrence and continued growth of intracranial meningioma

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The effectiveness and safety of intraoperative photodynamic therapy in patients with recurrent intracranial meningiomas were examined. Intraoperative photodynamic therapy was performed in three patients suffering from relapse and continued growth of histologically confirmed intracranial meningiomas of supratentorial localization. Intraoperative photodynamic therapy was conducted with consent from patients and was confirmed by a medical commission. We used a photosensitizer of the chlorin e6 group — photoditazine (Veta-Grand, Russia). The drug was administered intravenously at a dose of 1 mg/kg during induction of anesthesia. For irradiation, laser installation Latus (ATKUS, St. Petersburg, Russia) with a power of 2.5 W and wavelength of 662 nm was used. Irradiation was conducted in a continuous mode; the duration of therapy depended on the area of the irradiated surface based on a therapeutic light dose of 180 J/cm2. In the early postoperative period, the patients’ eyes were protected for 24 h from exposure to direct sunlight, and clinical, laboratory, and intrascopic controls were carried out. No complications associated with intraoperative photodynamic therapy were observed in the early postoperative period. On control intrascopy (magnetic resonance imaging in DWI, Flair, T2, T1 + contrast modes), data showing the therapeutic effect of intraoperative photodynamic therapy were obtained. In two cases, changes in tumor tissue and its matrix were confirmed pathomorphologically, indicating the therapeutic effect of intraoperative photodynamic therapy in relation to local control of meningiomas. Thus, the use of intraoperative photodynamic therapy in the complex treatment of patients suffering from a recurrent course of the neoplastic process (“aggressive” meningiomas) reveals its effectiveness for increasing the degree of radicality of the operation and safety. Further development of the technology of intraoperative photodynamic therapy is crucial in treating patients with “aggressive” meningiomas.

Full Text

Restricted Access

About the authors

Konstantin K. Kukanov

Russian Research Neurosurgical Institute named after prof. A.L. Polenova

Email: pashsukhoparov@gmail.com
ORCID iD: 0000-0002-1123-8271
SPIN-code: 8938-0675

MD, Сand. Sci. (Med.), senior research associate

Russian Federation, Saint Petersburg

Anastasiia S. Nechaeva

Russian Research Neurosurgical Institute named after prof. A.L. Polenova; World-class scientific center "Center for Personalized Medicine"

Email: nastja-nechaeva00@mail.ru
ORCID iD: 0000-0001-9898-5925
SPIN-code: 2935-0745

junior research associate

Russian Federation, Saint Petersburg; Saint Petersburg

Darya A. Sitovskaya

Russian Research Neurosurgical Institute named after prof. A.L. Polenova

Email: pashsukhoparov@gmail.com
ORCID iD: 0000-0001-9721-3827
SPIN-code: 3090-4740

researcher

Russian Federation, Saint Petersburg

Mikhail V. Dikonenko

Russian Research Neurosurgical Institute named after prof. A.L. Polenova; V.A. Almazov National Medical Research Center

Email: pashsukhoparov@gmail.com
ORCID iD: 0000-0002-8701-1292
SPIN-code: 6920-5656

neurosurgeon

Russian Federation, Saint Petersburg; Saint Petersburg

Pavel D. Sukhoparov

Saint Petersburg State Pediatric Medical University

Author for correspondence.
Email: pashsukhoparov@gmail.com
ORCID iD: 0009-0007-3185-7348
SPIN-code: 4066-7810

student

Russian Federation, Saint Petersburg

Ilya O. Ishchenko

Saint Petersburg State Pediatric Medical University

Email: pashsukhoparov@gmail.com
ORCID iD: 0009-0006-9122-5935
SPIN-code: 6451-5600

student

Russian Federation, Saint Petersburg

Yulia M. Zabrodskaya

Russian Research Neurosurgical Institute named after prof. A.L. Polenova

Email: pashsukhoparov@gmail.com
ORCID iD: 0000-0001-6206-2133
SPIN-code: 8571-3190

MD, Dr. Sci. (Med.)

Russian Federation, Saint Petersburg

Nikita K. Samochernykh

V.A. Almazov National Medical Research Center

Email: pashsukhoparov@gmail.com
ORCID iD: 0000-0002-6138-3055
SPIN-code: 6131-4468

a neurosurgeon

Russian Federation, Saint Petersburg

Garry V. Papayan

V.A. Almazov National Medical Research Center

Email: pashsukhoparov@gmail.com
ORCID iD: 0000-0002-6462-9022
SPIN-code: 7327-7837

Сand. Sci. (Tech.), senior research associate

Russian Federation, Saint Petersburg

Victor E. Olushin

Russian Research Neurosurgical Institute named after prof. A.L. Polenova

Email: pashsukhoparov@gmail.com
ORCID iD: 0000-0002-9960-081X

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Konstantin A. Samochernykh

V.A. Almazov National Medical Research Center

Email: pashsukhoparov@gmail.com
ORCID iD: 0000-0003-0350-0249
SPIN-code: 4188-9657

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

References

  1. El-Khatib M, Tepe C, Senger B, et al. Aminolevulinic acid-mediated photodynamic therapy of human meningioma: an in vitro study on primary cell lines. Int J Mol Sci. 2015;16(5):9936–9948. doi: 10.3390/ijms16059936
  2. Nakahara Y, Ito H, Masuoka J, Abe T. Boron neutron capture therapy and photodynamic therapy for high-grade meningiomas. Cancers (Basel). 2020;12(5):1334. doi: 10.3390/cancers12051334
  3. Konovalov AN, Kozlov AV, Cherekaev VA, et al. Meningioma challenge: analysis of 80-year experience of Burdenko neurosurgical institute and future perspectives. Burdenko’s Journal of Neurosurgery. 2013;77(1):12–23. EDN: PYATKB
  4. Tigliev GS, Olyushin VE, Kondratyev AN. Intracranial meningiomas. Saint Petersburg; 2001. 560 р. (In Russ.)
  5. Zabolotny RA, Fedyanin AV, Yulchiev UA, et al. Comprehensive treatment of patients with parasagittal meningiomas. Burdenko’s Journal of Neurosurgery. 2019;83(4):121–125. EDN: TUNBPQ doi: 10.17116/neiro201983041121
  6. Kukanov KK, Ushanov VV, Zabrodskaya YuM, et al. Ways to personalize the treatment of patients with relapse and continued growth of intracranial meningiomas. Russian Journal of Personalized Medicine. 2023;3(3):48–63. EDN: FZQSKY doi: 10.18705/2782-38062023-3-3-48-63
  7. Certificate of state registration of the database № RU 2023621571 / 02.05.2023 Kukanov KK, Ushanov VV, Voinov NE. Register of patients with relapse and continued growth of intracranial meningiomas. Moscow: 2023. 1 p. EDN: VBRSBM (In Russ.)
  8. Kukanov KK, Vorobyova OM, Zabrodskaya YuM, et al. Intracranial meningiomas: clinical, intrascopic and pathomorphological causes of recurrence (literature review). Siberian Journal of Oncology. 2022;21(4):110–123. (In Russ.) EDN: DBARSI doi: 10.21294/1814-4861-2022-21-4-110-123
  9. Schipmann S, Schwake M, Sporns PB, et al. Is the simpson grading system applicable to estimate the risk of tumor progression after microsurgery for recurrent intracranial meningioma? World Neurosurg. 2018;119:e589–e597. doi: 10.1016/j.wneu.2018.07.215
  10. Patent RUS № 2236270 / 20.09.2004. Tigliev GS, Chesnokova EA, Olyushin VE, et al. Method for treating the cases of malignant cerebral tumors having multifocal growth pattern. (In Russ.)
  11. Patent RUS № 2318542 / 10.03.2008. Comfort AV, Olyushin VE, Ruslyakova IA, et al. Method of photodynamic therapy for the treatment of glial tumors of the cerebral hemispheres. (In Russ.)
  12. Noske DP, Wolbers JG, Sterenborg HJ. Photodynamic therapy of malignant glioma. A review of literature. Clin Neurol Neurosurg. 1991;93(4):293–307. doi: 10.1016/0303-8467(91)90094-6
  13. Akimoto J. Photodynamic therapy for malignant brain tumors. Neurol Med Chir (Tokyo). 2016;56(4):151–157. doi: 10.2176/nmc.ra.2015-0296
  14. Ostrom QT, Gittleman H, Xu J, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro Oncol. 2016;18(5):1–75. doi: 10.1093/neuonc/now207
  15. Karnofsky DA, Burchenal JH. The clinical evaluation of chemotherapeutic agents in cancer. In: Evaluation of chemotherapeutic agents. MacLeod CM, editor. New York: Columbia University Press; 1949. P. 196.
  16. Al-Mefty, Ossama MD. Meningiomas. New York: Raven press; 1991. 630 p.
  17. Kiesel B, Freund J, Reichert D, et al. 5-ALA in suspected low-grade gliomas: current role, limitations, and new approaches. Front Oncol. 2021;11:699301. doi: 10.3389/fonc.2021.699301
  18. Reshetov IV, Korenev SV, Romanko YuS. Forms of cell death and targets at photodynamic therapy. Siberian Journal of Oncology. 2022;21(5):149–154. (In Russ.) EDN: ACMUZT doi: 10.21294/1814-4861-2022-21-5-149-154
  19. Rynda AYu, Rostovtsev DM, Olyushin VE, et al. Therapeutic pathomorphosis in malignant glioma tissues after photodynamic therapy with сhlorin e6 (reports of two clinical cases). Biomedical Photonics. 2020;9(2):45–54. (In Russ.) EDN: ATSWVP doi: 10.24931/2413-9432-2020-9-2-45-54
  20. Rynda AYu, Rostovtsev DM, Olyushin VE, et al. Fluorescence-guided resection of glioma — literature review. Rossiiskii neirokhirurgicheskii zhurnal imeni professora A. L. Polenova. 2018;10(1):97–110 (In Russ.) EDN: VGOGCW
  21. Rynda AYu, Olyushin VE, Rostovtsev DM, et al. Fluorescent diagnostics with chlorin E6 in surgery of low-grade glioma. Biomedical Photonics. 2021;10(4):35–43. (In Russ.) EDN: MPGCMB doi: 10.24931/2413-9432-2021-10-4-35-43
  22. Rynda AYu, Olyushin VE, Rostovtsev DM, et al. Intraoperative fluorescence control with chlorin E6 in resection of glial brain tumors. Burdenko’s Journal of Neurosurgery. 2021;85(4):20–28. EDN: IYTDSE doi: 10.17116/neiro20218504120
  23. Rynda AYu, Olyushin VE, Rostovtsev DM, et al. Comparative analysis of 5-ALA and chlorin E6 fluorescence-guided navigation in malignant glioma surgery. Pirogov Russian Journal of Surgery. 2022;(1):5–14. EDN: IBJRPM doi: 10.17116/hirurgia20220115
  24. Rafaelian AA, Alekseev DE, Martynov BV, et al. Stereotactic photodynamic therapy in the treatment of relapsed glioblastoma. Case from practice and literature review. Burdenko’s Journal of Neurosurgery. 2020;84(5):81–88. EDN: OCQSTL doi: 10.17116/neiro20208405181
  25. Rafaelian A, Martynov B, Chemodakova K, et al. Photodynamic interstitial stereotactic therapy for recurrent malignant glioma. Asian Journal of Oncology. 2023;9(14):1–9. EDN: LOMBOQ doi: 10.25259/ASJO-2022-69-(433)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Patient M., 52 years old. Magnetic resonance imaging of the brain in T1 mode + contrast in axial (а), coronal (b) and sagittal projections (с)

Download (383KB)
3. Fig. 2. Spectroscopic examination before photodynamic therapy: a — skin fluorescence index — 3; fluorescence index of the intact dura mater — 4; tumor matrix fluorescence index — 7.5; fluorescence index of meningioma — 8; b — intraoperative fluorescence visualization, fluorescence index — 3

Download (145KB)
4. Fig. 3. Spectroscopic examination during photodynamic therapy: a — fluorescence index of the tumor matrix before the start of photodynamic therapy — 12; after session 1 of photodynamic therapy, the fluorescence index decreased to 4.5. After session 2 of photodynamic therapy, the fluorescence index in the irradiated area decreased to 4 (to the level of the fluorescence index in the intact dura mater). b — Intraoperative fluorescence visualization, fluorescence index — 0

Download (391KB)
5. Fig. 4. Patient M., 52 years old. Magnetic resonance imaging of the brain in T1 + contrast mode in axial (а), coronal (b), and sagittal (c) projections (postoperative control)

Download (331KB)
6. Fig. 5. Patient M., 52 years old. Magnetic resonance imaging of the brain in DWI mode in axial projection (arrow: zone of reduction/ limitation of diffusion)

Download (91KB)
7. Fig. 6. Expression of progesterone receptors in atypical meningioma, increase × 400: a — before photodynamic therapy; b — after photodynamic therapy

Download (382KB)
8. Fig. 7. Expression of caspase-3 of the perifocal zone of tumors, increase × 400: a — before photodynamic therapy; b, c — after photodynamic therapy (black arrow: gliocytes; green arrow: neurons)

Download (363KB)
9. Fig. 8. Patient P., 49 years old. Magnetic resonance imaging of the brain in T1 + contrast mode in axial (a), coronal (b), and sagittal (c) projections

Download (338KB)
10. Fig. 9. Spectroscopic examination before photodynamic therapy: а — skin fluorescence index — 2; fluorescence index of intact dura mater at 1 cm from the tumor matrix — 4.6; tumor matrix fluorescence index — 5.6; meningioma fluorescence index — 7. However, only the fluorescence curve of meningioma has the form of true chlorine fluorescence; b — intraoperative fluorescence visualization, fluorescence index — 3

Download (399KB)
11. Fig. 10. Spectroscopic examination during photodynamic therapy: а — fluorescence index of the bed of the removed tumor before photodynamic therapy, 8; after session 1 of photodynamic therapy, fluorescence index decreased to 3.2. After the second half of photodynamic therapy, fluorescence index decreased to 1.2; b — intraoperative fluorescence imaging, fluorescence index — 0

Download (395KB)
12. Fig. 11. Patient P., 49 years old. Magnetic resonance imaging of the brain (postoperative control) in the DWI mode (a) and T1 + contrast in axial (b) and coronal (c) projections

Download (280KB)
13. Fig. 12. Patient P., 48 years old. Magnetic resonance imaging of the brain in T1 + contrast mode in axial (a), coronal (b), and sagittal (c) projections

Download (293KB)
14. Fig. 13. Spectroscopic examination before photodynamic therapy: а — skin fluorescence index — 4.8; intact dura mater fluorescence index — 7; tumor matrix fluorescence index — 12; meningioma fluorescence index — 22; b — intraoperative fluorescence imaging, fluorescence index — 1

Download (324KB)
15. Fig. 14. Spectroscopic examination during of photodynamic therapy: а — fluorescence index of the residual part of the tumor before photodynamic therapy — 13; after session 1 of photodynamic therapy, fluorescence index decreased to 7. After session 2 of photodynamic therapy, fluorescence index decreased to 6 (to the level of fluorescence index in the intact dura mater); b — intraoperative fluorescence imaging, fluorescence index — 0

Download (329KB)
16. Fig. 15. Patient P., 48 years old. Magnetic resonance imaging of the brain (postoperative control) in the DWI mode (a) and T1 + contrast in axial (b) and coronal (c) projections

Download (312KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies