Pesquisa

Edição
Título
Autores
MULTI-OBJECTIVE BASED FEATURE SELECTION AND NEURAL NETWORKS ENSEMBLE METHOD FOR SOLVING EMOTION RECOGNITION PROBLEM
Ivanov I.
Interpreting and processing side-scan sonar data with the objective of further automation
Goncharov A., Goncharova E.
FUZZY CLASSIFIER DESIGN WITH COEVOLUTIONARY ALGORITHMS APPLYING FOR SPEAKER IDENTIFICATION
Sergienko R.
Speech-based emotion recognition of the distant student with adaptive intellectual information technologies
Brester C., Vishnevskaya S., Semenkina O.
COEVOLUTIONARY ASYMPTOTIC GENETIC ALGORITHM FOR SYLLABLE MODELBASED IDENTIFICATION OF SENTENCES IN AUTOMATIC RECOGNITIONOF CONTINUOUS SPEECH
Zablotskiy S., Semenkin E., Shvets A., Zablotskiy S., Semenkin E., Shvets A.
ABOUT MULTIAGENT SYSTEM APPLICATIONS FOR SPEECH RECOGNITION PROBLEM
Ryzhikov I.
MULTI-OBJECTIVE GENETIC ALGORITHMS AS AN EFFECTIVE TOOL FOR FEATURE SELECTION IN THE SPEECH-BASED EMOTION RECOGNITION PROBLEM
Brester C., Semenkina O., Ulm University M.
ON THE CONCEALMENT OF TRANSMISSION ERRORS FOR DISTRIBUTED SPEECH RECOGNITION SYSTEMS
Zaykovskiy D.
GRAPHIC INFORMATION PROCESSING USING INTELLIGENT ALGORITHMS
Engel E.
COMPARISON OF NONPARAMETRIC TESTING CRITERIA OF HYPOTHESIS OF DISTRIBUTION OF RANDOM VARIABLES
Lapko A., Lapko V.
MULTI-OBJECTIVE APPROACH FOR DESIGNING ENSEMBLE OF NEURAL NETWORK CLASSIFIERS WITH FEATURE SELECTION FOR EMOTION RECOGNITION PROBLEM
Ivanov I., Sopov E., Panfilov I.
EMOTION RECOGNITION AND SPEAKER IDENTIFICATION FROM SPEECH
Sidorov M., Zablotskiy S., Minker W., Semenkin E.
Forming of context-dependent grammar for describing of comlex scene with multi-level moving of objects
Favorskaya M., Popov A.
Nonparametric qualifierand Kolmogorovs criterion in the task of matching of empirical and theoretical cumulativedistribution functions of an one-dimensional random variable
Lapko A., Lapko V., Strukov I., Gusarov A., Lapko A., Lapko V., Strukov I., Gusarov A.
A real-time algorithm for human’s hand gesture recognition on video-sequence for human-computer interaction interfaces
Chudnovsky M.
ON NONPARAMETRIC DIAGNOSIS AND CONTROL OF THE PROCESS OF ELECTRONICS MANUFACTURE
Orlov V., Sergeyeva N.
Image enhancement for face recognition system
Pakhirka A.
SET -THEORETIC ANALYSIS OF ALGEBRAIС PROBLEBMS OF GROUPS RECOGNIZABILITY BY SPECTRUM
Kuznetsov A.
Algorithm of hand gesture recognition based on skeleton model of hand
Nosov A.
COMBINING CLUSTERING AND CLASSIFICATION APPROACHES FOR SPEECH-BASED EMOTION RECOGNITION PROBLEM
Polyakova A., Sidorov M., Semenkin E.
MATHCAD software usage for diagnosticating aerotechnicson the method of theorem of hypotheses
Lukasov V., Nikushkin N.
PROPERTIES OF A NONPARAMETRIC ESTIMATION OF THE EQUATIONOF A SEPARATING SURFACE IN THE PATTERN RECOGNITION TASKAT CASUAL VALUES OF FUZZINESS COEFFICIENTS OF KERNEL FUNCTIONS
Lapko A., Lapko V., Lapko A., Lapko V.
Assessment of stability learning algorithms large artificial neural networks of biometric application
Kachalin S.
ABOUT THE METHODS FOR SELECTION INFORMATIVE FEATURES USING SELF-ADJUSTING NEURAL NETWORK CLASSIFIERS AND THEIR ENSEMBLES
Loseva E., Sergienko R.
The dynamic patterns recognition based on predicating filters
Favorskaya M.
FUNCTIONS OF RIVAL SIMILARITY IN ALGORITHMS OF RECOGNITION OF COMBINED TYPE
Zagoruyko N., Borisova I., Dyubanov V., Kutnenko O., Zagoruiko N., Borisova I., Dyubanov V., Kutnenko O.
Person identification by signature in the electronic document management system
Baranov R.
ROBUST AND RELIABLE TECHNIQUES FOR SPEECH-BASED EMOTION RECOGNITION
Brester C., Semenkina O., Sidorov M., Brester K., Semenkina O., Sidorov M.
Nonparametric method for testing the hypothesis of independence of random variables and its application in the analysis of remote sensing data
Sharueva A.
Usage of hierarchical neural networks for multiple vision scenes recognition
Engel E., Zav'yalova O.
HYBRID ALGORITHM OF PATTERN RECOGNITION AND ITS PROPER TIES
Lapko A., Lapko V., Sarenkov A.
The selection of logical patterns for constructing a decision rule of recognition
Antamoshkin A., Masich I.
1 - 32 de 32 resultados
Dicas:
  • Palavras-chave são sensíveis a maiúsculas
  • Preposições e conjunções ingleses são ignoradas
  • Busca é feita por todos os palavras-chave (agente AND experimentador) por omissão
  • Use OR para pesquisar um termo exato, ex.: educação OR formação
  • Use parênteses para criar frases complexas, ex.: arquivo de ((revistas OR conferências) NOT teses)
  • Para pesquisar uma frase precisa use aspas duplas, ex.: "investigações científicas"
  • Exclua uma palavra utilizando o sinal - (hífen) ou operador NOT; ex.: concurso-de beleza ou concurso NOT de beleza
  • Use * como caractere-coringa, ex.: científic* recuperará as palavras "científico", "científicos", etc.