Экологическая генетика

Медико-биологический рецензируемый ежеквартальный научный журнал, издается с 2003 года.

Главный редактор

Учредитель

  • ООО "Эко-Вектор"

Издатель

  • ООО "Эко-Вектор"

Индексация

О журнале

«Экологическая генетика» публикует оригинальные научные статьи, посвященные любым аспектам взаимосвязей генетических и экологических процессов у любых организмов и на всех уровнях организации живых систем: от молекулярного до экосистемного.

Целью журнала является публикация новых результатов научных исследований, методических разработок, моделирования эколого-генетических процессов и других материалов, полученных с использованием современных молекулярно-генетических, биоинформационных и других методик.

Мы публикуем материалы, которые:

  • вносят существенный вклад в развитие общебиологических теорий и методологии эколого-генетических исследований;
  • способствуют лучшему пониманию роли генетических механизмов в регуляции внутри- и межвидовых взаимодействий организмов, а также во взаимодействиях "организм-среда";
  • способствуют лучшему пониманию современных общебиологических проблем.

Публикации журнала представляют интерес для широкого круга специалистов в областях экологии, генетики, биохимии, общей биологии, эволюционной теории, а также для медиков, преподавателей и студентов различных биологических профилей.

Официальные языки журнала - английский и русский.

Английская версия статьи появляется на сайте через три месяца после публикации русской версии.

Издание выходит при активном участии многих организаций, в том числе:


Текущий выпуск

Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Доступ платный или только для подписчиков

Том 22, № 1 (2024)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

От редакции

Третья Международная конференция «ГМО: история, достижения, социальные и экологические риски»
Матвеева Т.В.
Аннотация

С 3 по 5 октября 2023 г. в Санкт-Петербургском государственном университете в рамках реализации Программы создания и развития Научного центра мирового уровня «Агротехнологии будущего» прошла Третья Международная конференция «ГМО: история, достижения, социальные и экологические риски». В этом выпуске представлены материалы избранных докладов конференции, посвященной 300-летнему юбилею Санкт-Петербургского государственного университета.

Экологическая генетика. 2024;22(1):5-12
pages 5-12 views

Генетические основы эволюции экосистем

CRISPR/Cas-редактирование гена CPC у Arabidopsis thaliana
Хуснутдинов Э.А., Панфилова М.А., Терехов М.П., Михайлова Е.В.
Аннотация

Актуальность. Идентификация генов-мишеней, обеспечивающих видимый фенотипический эффект, может способствовать разработке стратегий бесследного геномного редактирования и использованию получаемых сортов сельскохозяйственных культур в сельском хозяйстве. CAPRICE (CPC) представляет собой одноповторный транскрипционный фактор R3 MYB, участвующий в биосинтезе антоцианов и образовании трихом. Предположительно, CPC контролирует экспрессию дигидрофлавонол-4-редуктазы (DFR) — ключевого гена биосинтеза антоцианов.

Цель — определить, приводит ли нокаут гена CPC с помощью CRISPR/Cas9 к видимому накоплению антоцианов.

Материалы и методы. Для вырезания домена MYB из гена CPC Arabidopsis thaliana были подобраны 3 направляющие РНК. В редактированных растениях изучали содержание антоцианов и экспрессию генов CPC и DFR.

Результаты. Ожидаемая делеция 662 п. н. была обнаружена у 2,7 % устойчивых к глюфосинату растений, однако ни одна из мутаций не была гомозиготной. Четыре отредактированные линии были изучены в четырех поколениях. В отредактированных линиях наблюдалась активация гена DFR, однако по экспрессии гена CPC, содержанию антоцианов и развитию трихом они существенно не отличались от контрольных растений. Более того, у A. thaliana пигментация не зависела напрямую от экспрессии генов DFR или CPC.

Заключение. Наши результаты демонстрируют, что ген CPC участвует в регуляции экспрессии гена DFR и пути биосинтеза антоцианов, однако при появлении мутаций растения могут использовать другие факторы транскрипции для поддержания гомеостаза. Таким образом, ген CPC арабидопсиса не является подходящей мишенью для исследований системы CRISPR/Cas.

Экологическая генетика. 2024;22(1):13-22
pages 13-22 views
Биохимическая характеристика трансформированных корней Pisum sativum L. subsp. sativum var. Sativum с модифицированным морфотипом листа
Тимина О.О., Тимин О.Ю., Степанова А.Ю.
Аннотация

Актуальность. В литературных источниках данные об успешном получении высокобелковых корневых культур гороха с мутантными аллелями tl и af tl и их биохимическая характеристика не представлены.

Цель — биохимическая характеристика полученных трансформированных культур мутантных линий гороха с модифицированным морфотипом листа. Задачи исследований: уточнение состава генов rol трансформированных культур гороха дикими штаммами Agrobacterium rhizogenes и аминокислотный анализ общего белка полученных культур.

Материалы и методы. Тотальная ДНК была выделена из культуры корней мутантов гороха. Исследования выполнены на оборудовании термоциклер «Терцик» фирмы «ДНК-Технология» (Россия). Выявление ампликонов проводили методом электрофореза в 2 % агарозном геле. Гель визуализировали и фотографировали в ультрафиолетовом излучении (λ = 312 нм). Количественный и качественный аминокислотный состав корневых культур определяли методом ионообменной хроматографии на аминокислотном анализаторе ААА-339 (Microtechna, Чехия).

Результаты. Методом ПЦР выявлено отсутствие агробактериальной контаминации в трансформированных культурах и их стабильный рост на жидких и агаризованных безгормональных средах в течение 5 лет. ПЦР-анализ показал наличие двух генов rol C и D в культуре с генотипом tltl и четырех генов rol A, B, C и D в культуре с генотипом afaftltl. Обнаружено дифференцированное содержание ряда аминокислот в биомассе трансформированных культур в зависимости от генотипа культуры и вставок генов rol. Выявлены семь незаменимых аминокислот в обеих культурах. Лимитирующей незаменимой аминокислотой для обеих культур оказался триптофан.

Вывод. По содержанию суммы незаменимых, кетогенных и серосодержащих аминокислот корневая культура с генами rol A, B, C, D оказалась наиболее богатой и сбалансированной.

Экологическая генетика. 2024;22(1):23-32
pages 23-32 views
Взаимодействие гомеодомена транскрипционного фактора WOX4 Raphanus sativus с промотором гена биосинтеза цитокининов LOG3
Кузнецова К.А., Додуева И.Е., Лутова Л.А.
Аннотация

Транскрипционный фактор WOX4 — ключевой регулятор развития камбия, однако к настоящему времени нет данных о его прямых мишенях. В задачи нашей работы входило изучение влияния сверхэкспрессии гена RsWOX4-2 на развитие корня и экспрессии генов у редиса (Raphanus sativus L.) — модельного корнеплодного растения, родственного Arabidopsis thaliana, а также поиск вероятных прямых мишеней транскрипционного фактора RsWOX4-2. Сверхэкспрессия и РНК-интерференция RsWOX4-2 вызывает изменение уровней экспрессии ряда генов, промоторы которых содержат консервативные сайты связывания транскрипционных факторов семейства WOX. С помощью дрожжевой одногибридной системы мы показали, что ДНК-связывающий гомеодомен RsWOX4-2 взаимодействует с сайтом TAATCC в промоторе гена RsLOG3, который кодирует фермент биосинтеза цитокининов.

Экологическая генетика. 2024;22(1):33-46
pages 33-46 views
Трансгенез микроводоросли Chlamydomonas reinhardtii: актуальные подходы
Виролайнен П.А., Чекунова Е.М.
Аннотация

Микроводоросли — богатый источник биологически активных веществ природного происхождения, которые находят применение в фармацевтическом, сельскохозяйственном, пищевом и промышленном производстве. Генетическая инженерия микроводорослей открывает большие возможности для создания штаммов-продуцентов различных пищевых добавок, коммерческих ферментов, а также белков терапевтического назначения — антител, гормонов и вакцин. Одноклеточная зеленая водоросль Chlamydomonas reinhardtii P.A. Dang. — модельный объект генетики фотосинтеза — оказалась удобной для разработки новых подходов в генетической инженерии микроводорослей. Преимущества C. reinhardtii состоят в возможности трансформации всех трех ее геномов (ядерного, митохондриального и хлоропластного), низкой стоимости и простоте культивирования, безопасности для человека и наличии системы посттрансляционной модификации белков, что делает этот организм потенциально интересной платформой для применения в биотехнологии. За последние несколько лет были достигнуты значительные успехи в трансгенезе C. reinhardtii, в том числе с применением новых методик редактирования генома. В этом обзоре мы представляем данные о современных достижениях в области модификации генома одноклеточной зеленой водоросли C. reinhardtii: принципы дизайна трансгенных конструкций, методики трансформации ядерного и хлоропластного геномов, используемые селективные маркеры и подходы к редактированию геномов с помощью системы CRISPR/Cas9.

Экологическая генетика. 2024;22(1):47-62
pages 47-62 views

Методология экологической генетики

Разработка подходов для геномного редактирования растений гороха с использованием технологии CRISPR/Cas9
Канцурова Е.С., Козлов Н.В., Долгих Е.А.
Аннотация

Митоген-активируемые протеинкиназы (МАРК) являются важными внутриклеточными регуляторами сигнальных путей у растений. Установлено, что некоторые МАРК активируются в корнях бобовых растений при симбиозе с азотфиксирующими бактериями — ризобиями. Один из таких сигнальных регуляторов — MAPK6, которая участвует в развитии симбиоза растений гороха посевного Pisum sativum L. с ризобиями. С использованием генно-инженерных подходов была осуществлена сверхэкспрессия гена PsMAPK6 в трансгенных корнях гороха, что привело к увеличению количества клубеньков и биомассы растений. Мы разработали новые подходы для редактирования генома гороха с использованием технологии CRISPR/Cas9 первичного редактирования (prime editing), когда в качестве мишени использовали ген PsMAPK6. При анализе трансгенных корней гороха в геноме трансформантов был выявлен ген, кодирующий последовательность направляющей РНК Cas9 (pegRNA, от англ. prime-editing guide RNA). Возможность использования методов генной инженерии для получения растений с повышенной эффективностью симбиоза является перспективной для дальнейших экспериментов.

Экологическая генетика. 2024;22(1):63-74
pages 63-74 views
Методы «прогулки по геному» на основе ПЦР (обзор)
Окулова Е.С., Бурлаковский М.С., Лутова Л.А.
Аннотация

В обзоре рассматриваются ряд классических и современных методов, позволяющих установить нуклеотидную последовательность неизвестных участков ДНК, фланкирующих известные. Они применяются для расшифровки регуляторных областей генов, определения сайтов встраивания Т-ДНК или вирусов и т. д., в тех случаях, когда использование полногеномного секвенирования неоправданно. Чтобы амплифицировать участок ДНК, к концу неизвестной последовательность необходимо добавить участок связывания для праймера; это реализуется либо путем лигирования адаптера, либо посадкой вырожденного праймера в мягких условиях, либо закольцовыванием фрагмента ДНК, чтобы изучаемый участок оказался окружен известными. Второй важной задачей является избавление от неизбежно возникающих продуктов неспецифического связывания адаптеров либо вырожденных праймеров — чаще всего данная проблема разрешается несколькими раундами вложенной ПЦР. Разные методы существенно отличаются по трудоемкости, распространенности и доступности необходимых реактивов.

Экологическая генетика. 2024;22(1):75-104
pages 75-104 views

Постпубликационные изменения

Ошибка в статье «The strong base for using base editing in plants» (doi: 10.17816/ecogen567885)
Аннотация

The editorial board regret that in the published version of this conference paper the middle initial of the author M. Lebedeva was shown as A instead of V. The author’s name is Marina V. Lebedeva. The editorial board is confident that the error could not significantly affect the perception of the work and the interpretation of information by readers. The error has been corrected online, the file of the article and the issue have been updated.

Экологическая генетика. 2024;22(1):105-106
pages 105-106 views


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах